Search results for: “microgravity”

  • Boiling in Microgravity

    Boiling in Microgravity

    In the playground of microgravity, every day processes can behave much differently. This photo comes from the RUBI experiment, the Reference mUltiscale Boiling Investigation, aboard the International Space Station. Freshly installed and switched on, the apparatus is now generating bubbles like this one. On the left, you see temperature sensors used to measure bubble temperatures. High-speed and infrared cameras are also part of the experiment.

    The advantage of studying boiling in space is a lack of gravity that can mask or overwhelm subtler effects. It effectively slows down the process, making it easier to observe. And since boiling is such an important part of heat transfer in many manmade devices, it shows us how we have to adapt when operating in an environment where heat – and bubbles – don’t automatically rise. (Image credit: ESA; submitted by Kam-Yung Soh)

  • Carbonation in Microgravity

    Carbonation in Microgravity

    Bubbly beverages are popular among humans, but there’s surprising complexity underlying their seemingly simply carbonation, as explored in a new Physics Today article. Most drinks get their bubbles from carbon dioxide, which at higher than atmospheric pressures, can stay dissolved inside water and other liquids. When that pressure gets released, any carbon-dioxide-filled gas cavity in the liquid adopts the allowable saturation concentration for the ambient pressure, which sets up a concentration gradient of carbon dioxide  between the liquid and the bubble. That causes carbon dioxide gas to diffuse into the bubbles, making them grow. 

    Here on Earth, those growing bubbles are buoyant, and they form rising plumes of bubbles. They continue gathering carbon dioxide as they rise, making them grow ever larger (lower left). In microgravity, on the other hand, the bubbles congregate where they form and continue growing through diffusion (lower right). This is one reason carbonated beverages are unpopular in space – instead of rising to the surface and escaping, all the carbon dioxide in a drink gets consumed, leaving astronauts with no way to expel it aside from burping!

    For lots more fascinating facts about bubbly drinks – including how they relate to geology! – check out the full Physics Today article. (Image credits: beer – rawpixel; bubbles – P. Vega-Martínez et al.; see also: R. Zenit and J. Rodríguez-Rodríguez)

  • Featured Video Play Icon

    Hair-Washing in Microgravity

    I imagine that the most common questions astronauts get come in the form, “How do you do X in space?” In this video, astronaut Karen Nyberg demonstrates how she washes her hair in space. Using no-rinse shampoo, the process is not terribly different from on Earth: wet the hair, work in the shampoo, add a little more water, and use a towel and comb to work it through all the hair. The big difference is that Nyberg’s hair sticks almost straight up the whole time. That’s an effect of microgravity, obviously, but there are fluid forces at play, too, namely elastocapillarity.

    Hair typically feels quite different when it’s wet. Strands bunch together and feel stiffer. This is because of the water trapped in the narrow space between individual hairs. The water’s fluid characteristics (capillarity) affect the solid hairs and change their elastic properties – hence elastocapillarity. We see this on Earth, of course, but the effect is especially noticeable without gravity pulling the wet hair down. (Video credit: K. Nyberg/NASA; via APOD; submitted by Guillaume D.)

  • Capillary Action in Microgravity

    Capillary Action in Microgravity

    On Earth, gravity dominates over many fluid effects, but in microgravity a different picture emerges. This animation shows a two-channel apparatus partially filled with silicone oil being dropped. While in free-fall, the liquid experiences microgravity conditions and the height of the fluid in the two connected channels changes. The oil meniscus climbs up the walls of the tubes thanks to capillary action. This is the result of intermolecular forces between the liquid and solid walls. Capillary action is most effective in narrow tubes where surface tension and the adhesion between the liquid and solid can actually propel liquid up the walls, as seen here. On Earth we mostly ignore capillary action, except in very small spaces, but for space systems, it is a major force to reckon with in designing flows. (Image credit: NASA Glenn Research Center, source)

  • Microgravity Can Change Vision

    Microgravity Can Change Vision

    In recent years, astronauts have reported their vision changing as a result of long-duration spaceflight. Pre- and post-flight studies of astronauts’ eyes showed flattening along the backside of the eyeball, and scientists hypothesized that the redistribution of body fluids that occurs in microgravity could be reshaping astronauts’ eyes by increasing the intracranial pressure in their skulls.

    A new study tested this hypothesis with the first-ever measurements of intracranial pressure during microgravity flights and during extended microgravity simulation (a.k.a. bedrest with one’s head pointed downward). The authors found that humans here on Earth experience substantial changes in intracranial pressure depending on our posture – while upright we experience much lower intracranial pressure than we do when we’re lying flat. In both microgravity flights and simulation, patients had intracranial pressures that were higher than earthbound upright values but lower than what is experienced when lying flat on Earth.

    Since we humans on Earth spend about 2/3rds of our time upright and 1/3rd prone, our bodies are accustomed to regular variations in intracranial pressure. In space, astronauts don’t receive that regular unloading of intracranial pressure we have when we’re upright. So now researchers suggest that it is the lack of daily variation in intracranial pressure that is the culprit behind astronauts’ vision changes – not the absolute value of the pressure itself. (Image credit: NASA; N. Alperin et al.; research credit: J. Lawley et al.)

  • Swimming in Microgravity

    Swimming in Microgravity

    For years, I have wondered what a fish swimming in microgravity would look like. Finally, my curiosity has been rewarded. Here is a sphere of water in microgravity, complete with a fish. Personally, I am impressed that, despite the fish’s best efforts, the surface tension of the water is strong enough to keep it confined. This may not bode well for microgravity swimming pools at space hotels. (Video credit: IRPI LLC, source)

  • Coalescence in Microgravity

    Click through to see.

    Microgravity is a wonderful playground for fluid dynamics. Here astronaut Reid Wiseman demonstrates the interplay of forces involved in coalescence. When smaller droplets hit with insufficient force, they bounce off the water sphere. But if they hit hard enough to overcome surface tension, they coalesce with the sphere. I think the space station needs a high-speed video camera; I’d like to see this behavior at a few thousand frames per second! (Video credit: R. Wiseman/NASA)

  • Featured Video Play Icon

    Colliding in Microgravity

    On Earth, it’s easy for the effects of surface tension and capillary action to get masked by gravity’s effects. This makes microgravity experiments, like those performed with drop towers or onboard the ISS, excellent proving grounds for exploring fluid dynamics unhindered by gravity. The video above looks at how colliding jets of liquid water behave in microgravity. At low flow rates, opposed jets form droplets that bounce off one another. Increasing the flow rate first causes the droplets to coalesce and then makes the jets themselves coalesce. Similar effects are seen in obliquely positioned jets. Perhaps the most interesting clip, though, is at the end. It shows two jets separated by a very small angle. Under Earth gravity, the jets bounce off one another before breaking up. (The jets are likely separated by a thin film of air that gets entrained along the water surface.) In microgravity, though, the jets display much greater waviness and break down much quicker. This seems to indicate a significant gravitational effect to the Plateau-Rayleigh instability that governs the jet’s breakup into droplets. (Video credit: F. Sunol and R. Gonzalez-Cinca)