Tag: cavitation

  • Galapagos Week: Pistol Shrimp

    Galapagos Week: Pistol Shrimp

    One of the most striking things about snorkeling in the Galapagos was how loud it was underwater. There were hardly any boats nearby, but every time my ears dipped below the surface, I could hear a constant cacophony of sound. Some it came from waves against the sand, some of it was the sound of parrotfish nibbling on coral, but a lot of it was likely the work of a culprit I couldn’t see hidden in the sand: the pistol shrimp.

    These small crustaceans hunt with an oversized claw capable of snapping shut at around 100 kph. When the two halves of the claw come together, they push out a high-speed jet of water. High velocity means low pressure – a low enough pressure, in fact, to drop nearby water below its vapor pressure, causing bubbles to form and expand. These cavitation bubbles collapse quickly under the hydrostatic pressure of the surrounding water, creating a distinctive pop that makes the pistol shrimp one of the loudest sea creatures around. (Image credit: BBC Earth Unplugged, source; research credit: M. Versluis et al.)

    All week we’re celebrating the Galapagos Islands here on FYFD. Check out previous posts in the series here.

  • Featured Video Play Icon

    The Mantis Shrimp’s Left Hook

    The mantis shrimp is a tiny, clown-colored juggernaut of underwater physics. Some species have modified claws that serve as clubs for punching their prey, and the mantis shrimp swings that club fast – its acceleration is comparable to a bullet’s! Moving that quickly in water causes a drastic drop in local pressure, low enough to form a cavitation bubble. Such low-pressure bubbles themselves are not particularly dangerous, but their collapse is incredibly violent, especially near a solid surface, like the shell of the shrimp’s prey. Collapsing cavitation bubbles can send out shock waves, shatter glass, and even generate light. In the case of the mantis shrimp, it’s more than enough to stun, if not outright kill, its prey. (Video credit: Physics Girl)

  • Featured Video Play Icon

    Burning a Rocket Underwater

    In a recent video, Warped Perception filmed a model rocket engine firing underwater. Firstly, it’s no surprise that the engine would still operate underwater (after its wax waterproofing). The solid propellant inside the engine is a mixture of fuel and oxidizer, so it has all the oxygen it needs. Fluid dynamically speaking, though, this high-speed footage is just gorgeous.

    Ignition starts at about 3:22 with some cavitation as the exhaust gases start flowing. Notice how that initial bubble dimples the surface when it rises (3:48). At the same time, the expanding exhaust on the right side of the tank is forcing the water level higher on that side, triggering an overflow starting at about 3:55. At this point, the splashes start to obscure the engine somewhat, but that’s okay. Watch that sheet of liquid; it develops a thicker rim edge and starts forming ligaments around 4:10. Thanks to surface tension and the Plateau-Rayleigh instability, those ligaments start breaking into droplets (4:20). A couple seconds later, holes form in the liquid sheet, triggering a larger breakdown. By 4:45, you can see smoke-filled bubbles getting swept along by the splash, and larger holes are nucleating in that sheet.

    The second set of fireworks comes around 5:42, when the parachute ejection charge triggers. That second explosive triggers a big cavitation bubble and shock wave that utterly destroys the tank. If you look closely, you can see the cavitation bubble collapse and rebound as the pressure tries to adjust, but by that point, the tank is already falling. Really spectacular stuff!  (Video and image credit: Warped Perception)

  • Cavitating

    Cavitating

    Cavitation happens when the local pressure in a liquid drops below its vapor pressure. A low-pressure bubble forms, typically very briefly, when this occurs. These bubbles are spherical unless they form near a surface. In that case, the bubbles take on a flatter, oblong shape. As they collapse, the bubbles form a jet, like the one seen inside the bubble above. The jet extends through the bubble and stretches into a funnel shaped protrusion on the bubble’s far side. Eventually, the whole shape becomes unstable and breaks into many smaller bubbles. Shock waves can be generated in the collapse, too; often the jet generates at least two in addition to the ones created when the bubble reaches its minimum size. This is part of why cavitation can be so destructive near a surface. (Image credit: L. Crum)

  • Icy Spikes

    Icy Spikes

    Water is one of those strange materials that expands when it freezes, which raises an interesting question: what happens to a water drop that freezes from the outside in? A freezing water droplet quickly forms an ice shell (top image) that expands inward, squeezing the water inside. As the pressure rises, the droplet develops a spicule – a lance-like projection that helps relieve some of the pressure. 

    Eventually the spicule stops growing and pressure rises inside the freezing drop. Cracks split the shell, and, as they pull open, the cracks cause a sudden drop in pressure for the water inside (middle image). If the droplet is large enough, the pressure drop is enough for cavitation bubbles to form. You can see them in the middle image just as the cracks appear. 

    After an extended cycle of cracking and healing, the elastic energy released from a crack can finally overcome surface energy’s ability to hold the drop together and it will explode spectacularly (bottom image). This only happens for drops larger than a millimeter, though. Smaller drops – like those found in clouds – won’t explode thanks to the added effects of surface tension. (Image credit: S. Wildeman et al., source)

    ETA: A previous version of this post erroneously said this was freezing from the “inside out” instead of “outside in”.

  • Crowns On Impact

    Crowns On Impact

    Dropping a partially-filled test tube of water against a table makes the meniscus at the air-water interface invert into a jet of liquid. In some cases, the impact is strong enough to generate splashing crowns of water around the base of the jet. These crowns come in two forms – one with many splashes layered upon one another and the other with only a few splashes and a faster jet. 

    The many-layered splash crowns come from the pressure wave that reflects back and forth from the bottom of the tube to the surface and back. This pressure wave moves at the speed of sound and vibrates the water surface, creating the many splashes. The same reflected pressure wave occurs in the second type of splash crown, but it gets disrupted by cavitation bubbles that form in the water (visible in the lower left image). Instead the splash crowns form from the shock waves generated when the cavitation bubbles collapse. (Image credits: A. Kiyama et al.)

  • Inside Cavitation

    Inside Cavitation

    Cavitation bubbles live a short and violent life. It begins when a low-pressure void forms in a fluid–for example, when a liquid is accelerated so that the pressure drops below the vapor pressure, which can happen at the tips of a boat’s propeller or when striking a bottle. The bubbles that form expand and then collapse rapidly as the higher pressure of the liquid surrounding them squeezes them down. That collapse of the bubble is so violent that it heats the fluid inside the bubble to temperatures hotter than the surface of the sun, generating both a flash of light and a shock wave. It’s these shock waves that cause much of the damage associated with cavitation in engineering, but they can be used for good as well. Shock wave lithotripsy uses cavitation-induced shock waves to break down kidney stones. (Image credit: O. Supponen et al., source)

  • Featured Video Play Icon

    Living Fluid Dynamics

    This short film for the 2016 Gallery of Fluid Motion features Montana State University students experiencing fluid dynamics in the classroom and in their daily lives. As in her previous film (which we deconstructed), Shanon Reckinger aims to illustrate some of our everyday interactions with fluids. This time identifying individual phenomena is left as an exercise for the viewer, but there are hints hidden in the classroom scenes. How many can you catch? I’ve labeled some of the ones I noticed in the tags. (Video credit: S. Reckinger et al.)

  • Inside a Humidifier

    Inside a Humidifier

    After this, you may never look at a humidifier the same way again. Ultrasonic humidifiers generate tiny droplets using piezoelectric transducers. When the humidifier is on, the ultrasonic vibrations of the piezoelectric transducer create a pressure wave that forces the water above into a hill with a string of liquid droplets extending upward. For a sense of the scale, the gray bars shown in each image above represent 1mm. The super-fine droplets the humidifier produces come from cavitation of these larger drops, as shown in image c). Image d) shows snapshots of the formation of the droplet string over a matter of milliseconds. (Image credit: S. J. Kim et al., original poster)

  • Featured Video Play Icon

    Fluids Round-up

    Here’s to another fluids round-up, our look at some of the interesting fluids-related stories around the web:

    – Above is a music video by Roman Hill that relies on mixing and merging different fluids and perturbing ferrofluids for its visuals as it re-imagines the genesis of life.

    – GoPro takes viewers inside a Category 5 typhoon with 112 mph (180 kph; 50 m/s) winds.

    – Astronaut Scott Kelly demonstrates playing ping pong with a ball of water in space. (via Gizmodo)

    – See fluid dynamics on a global scale with Glittering Blue. (via The Atlantic)

    – To make a taller siphon, you have to find a way to avoid cavitation.

    – Speaking of siphons, Randall Munroe tackles the question of siphoning water from Europa over at What If? (submitted by jshoer)

    – The Mythbusters make a giant tanker implode using air pressure.

    – Sixty Symbols explores how tiny things swim.

    – What happens when you bathe in 500 pounds of putty? Let’s just say that bathing in an extremely viscous non-Newtonian fluid is not recommended. (via Gizmodo)

    (Video credit and submission: R. Hill et al.)

    Don’t forget to check out our Patreon page. Please help support FYFD by becoming a patron.