Tag: mantis shrimp

  • Featured Video Play Icon

    The Mantis Shrimp’s Left Hook

    The mantis shrimp is a tiny, clown-colored juggernaut of underwater physics. Some species have modified claws that serve as clubs for punching their prey, and the mantis shrimp swings that club fast – its acceleration is comparable to a bullet’s! Moving that quickly in water causes a drastic drop in local pressure, low enough to form a cavitation bubble. Such low-pressure bubbles themselves are not particularly dangerous, but their collapse is incredibly violent, especially near a solid surface, like the shell of the shrimp’s prey. Collapsing cavitation bubbles can send out shock waves, shatter glass, and even generate light. In the case of the mantis shrimp, it’s more than enough to stun, if not outright kill, its prey. (Video credit: Physics Girl)

  • Featured Video Play Icon

    4th Birthday: Mantis Shrimp

    Undoubtedly one of the most mind-boggling instances of fluid dynamics I’ve learned about in writing FYFD is that of sonoluminescence – an effect in which light is produced from imploding cavitation bubbles. In a laboratory, the effect is usually initiated with acoustic waves. A bubble can be forced to oscillate and collapse periodically when forced by the sound. During the collapse, the vapor inside the bubble reaches temperatures of the order of thousands of Kelvin, and light is produced. What is far more wild, though, is that the effect occurs in nature as well. Both the pistol shrimp and the mantis shrimp produce the effect. As shown in the video above, the mantis shrimp swings its club-like arm with such speed that the local pressure drops below the vapor pressure, causing a cavitation bubble to form and sonoluminescence to occur. Some real Mortal Kombat finishing move s&#% there, indeed.  (Video credit: Z. Frank)

  • Featured Video Play Icon

    Turning Sound into Light

    Sonoluminescence – the creation of light from sound – was discovered in the 1930s, and, due to the difficulty of obtaining direct measurements, the exact mechanism remains highly debated even today. The phenomenon typically takes place within a tiny cavitation bubble inside a liquid. When bombarded with ultrasonic sound, such a bubble will repeatedly expand and collapse. Once a bubble is established, the cycle can be kicked off by increasing the driving acoustic pressure. This will collapse the bubble, drastically increasing its pressure and temperature (up to thousands of degrees Kelvin) and causing the bubble to emit a pulse of light before the pressure imbalance causes it to expand again. Several theories exist as to how the light is generated, the leading one being that the high temperatures in the bubble ionize the noble gases within and that those free electrons emit light via thermal bremstrahlung radiation. Sonoluminescence happens outside the lab, too. Both the previously discussed pistol shrimp and the mantis shrimp generate such light-emitting bubbles when hunting. (Video credit: The Point Studios; suggested by Bobby E.)