When a flame is enclosed in a combustion chamber, it can create violent oscillations in the pressure field. Flames have a natural unsteadiness in their heat release. These temperature fluctuations create pressure waves in the chamber. In the right enclosure, those pressure waves resonate and feed energy back into the initial perturbation. This creates a self-exciting oscillation, not dissimilar from aeroelastic flutter. This combustion instability is known as a thermoacoustic instability because of the coupling between temperature and pressure (acoustic) waves. The quick demo above lets you see and hear such an instability; here’s the same setup in high-speed, which makes the oscillating flame even clearer. The violence of this instability can be great enough to destroy engines. Famously, the F1 engine used in the Saturn V rocket had a history of instability issues before the fuel-injector was redesigned. For another great demo of this effect, check out this video from T. Poinsot. (Video credit: V. Anandan)
Celebrating the physics of all that flows