Category: Research

  • Making Bubbles in Magma

    Making Bubbles in Magma

    When bubbles form in magma deep below the earth, volcanic eruptions follow. Scientists believe this happens when decompression of the magma allows volatile compounds to come out of solution and form bubbles–just as opening a bottle of seltzer allows carbon dioxide to bubble out. But a new study indicates that decompression may not be the only source of bubbles.

    Video of bubbles nucleating when a magma analog supersaturated with CO2 gets sheared.

    The team found that supersaturated fluids can nucleate bubbles when they’re sheared–even without decompression. They demonstrated this in the lab, not with magma but with a low-temperature magma analog, seen above. The more saturated with volatiles the fluid is, the less shear is needed to trigger bubbles.

    Viscous shear is everywhere for magma, so this bubble formation mechanism is likely common. Better understanding how and when bubbles form in magma directly affects predictions for eruptions–especially for determining whether they’re likely to be explosive or effusive. (Image credit: volcano – A. Bonnerdeaux, experiment – O. Roche et al.; research credit: O. Roche et al.; via Physics World)

    Fediverse Reactions
  • Toward Predicting Rogue Waves

    Toward Predicting Rogue Waves

    Rogue waves were once the stuff of nautical legend. Tales of giant lone waves were considered sailors’ tall tales, until an oil rig in the North Sea was hit by a 25.6-meter wave on 1 January 1995. The wave was more than twice the height of any others around it and much steeper, too. Since then, scientists have been working to understand how and why these rogue waves form.

    A recent study, like many others, attributes rogue waves to the subtle nonlinearities of ocean waves, which don’t match a smooth sinusoid even though they are sometimes modeled that way. When it comes to rogue waves, the sharpness of a wave’s peak and flattening of its trough affect whether waves come together into a lone giant.

    The study is based on 18 years worth of wave data collected at an offshore platform in the North Sea. With such an extensive data set, researchers were able to find patterns in the waves that precede the arrival of a rogue wave. That’s an important step toward being able to predict a rogue wave, which would help protect platforms, ships, and personnel. (Image credit: C. Wou; research credit: S. Knobler et al.; via SciAm)

    Fediverse Reactions
  • Necroprinting By Mosquito

    Necroprinting By Mosquito

    Engineers have been adapting biological materials into robotics in recent years. One of the latest versions of this trend is “necroprinting,” in which researchers built a microscale 3D printer around a mosquito’s proboscis. Made to pierce thick skin to reach blood, the mosquito proboscis offered the kind of size, geometry, and stiffness needed for small-scale printing. The team found that their necroprinter performed well at the ~20 micron scale, with the mosquito-based nozzle costing only a fraction of what a conventional human-made nozzle would. (Image credit: NIAID; research credit: J. Puma et al.; via Ars Technica)

    Fediverse Reactions
  • Thermal Tides Drive Venusian Winds

    Thermal Tides Drive Venusian Winds

    Venus is a world of extremes. A full rotation of the world takes 243 Earth days, but winds race around the planet at a speed that makes a Category 5 hurricane look sedate. Just what drives these winds has been an ongoing question for planetary scientists. A recent study suggests that tides are a major contributor to this superrotation.

    Unlike Earth’s tides, Venus’s are not gravitational in origin. Instead, Venusian tides are thermal, driven by heating in the sunward side of the atmosphere. This creates a diurnal tide, which cycles once per Venusian day and pumps momentum toward the tops of Venus’s clouds. The new analysis–rooted in both observations and numerical simulation–finds that diurnal tides are the primary driver behind the planet’s incredibly fast winds. (Image credit: NASA/JPL-Caltech; research credit: D. Lai et al.; via Eos)

    Fediverse Reactions
  • The Twin Roles of Turbulence in Fusion

    The Twin Roles of Turbulence in Fusion

    Inside a fusion reactor, magnetically-contained plasma gets heated to more than one hundred million degrees. That heat, researchers observed, spreads much faster than originally predicted. Now a team from Japan has measurements showing how turbulence manages this feat.

    The researchers show that the multiscale nature of turbulence allows it to transport heat in two ways. The first is familiar: acting locally, turbulence spreads heat little by little as small eddies mix and pass the heat along. But turbulence can also be nonlocal, they show, able to connect physically distant parts of a flow more rapidly than expected. This happens through turbulence’s larger scales, which can rapidly carry heated plasma from one side of the vessel to another.

    The researchers illustrate the two roles of turbulence through a metaphor of American football (can you believe it?). In their metaphor, the quarterback acts as turbulence and the ball represents heat. The quarterback can pass the ball to reach distant parts of the field quickly — just as nonlocal turbulence does–or they can hand off the ball to a running back, who carries the ball down the field more slowly, through local interactions with other nearby players. (Image credit: National Institute for Fusion Science; research credit: N. Kenmochi et al., via Gizmodo and EurekAlert)

    Fediverse Reactions
  • Marangoni Effect in Biology

    Marangoni Effect in Biology

    For decades, biologists have focused on genetics as the key determiner for biological processes, but genetic signals alone do not explain every process. Instead, researchers are beginning to see an interplay between genetics and mechanics as key to what goes on in living bodies.

    For example, scientists have long tried to unravel how an undifferentiated blob of cells develops a clear head-to-tail axis that then defines the growing organism. Researchers have found that, rather than being guided purely by genetic signals, this stage relies on mechanical forces–specifically, the Marangoni effect.

    The image above shows a mouse gastruloid, a bundle of stem cells that mimic embryo growth. As they develop, cells flow up the sides of the gastruloid, with a returning downward flow down the center. This is the same flow that happens in a droplet with higher surface tension in one region; the Marangoni effect pulls fluid from the lower surface tension region to the higher one, with a returning flow that completes the recirculation circuit.

    The same thing, it turns out, happens in the gastruloid. Genes in the cells trigger a higher concentration of proteins in one region of the bundle, creating a lower surface tension that causes tissue to flow away, helping define the head-to-tail axis. (Image credit: S. Tlili/CNRS; research credit: S. Gsell et al.; via Wired)

    Fediverse Reactions
  • Inside Solidification

    Inside Solidification

    As children, we’re taught that there are three distinct phases of matter–solid, liquid, and gas–but the reality is somewhat more complicated. In the right–often exotic–conditions, there are far more phases matter takes on. In a recent study, researchers described a metal that sits somewhere between a liquid and a solid.

    In a liquid, atoms are free to move. During solidification, atoms lose this freedom, and their frozen positions relative to one another determine the solid’s properties. Atoms frozen into orderly patterns form crystals, whereas those frozen haphazardly become amorphous solids. In their experiment, researchers instead observed atoms in liquid metal nanoparticles that remained stationary throughout the transition from liquid to solid. The number and position of stationary atoms affected whether the final solid crystallized or not.

    By tracking these stationary atoms and their influence, the team hopes to better control the material properties of the final solidified metal. (Image credit: U. of Nottingham; research credit: C. Leist et al.; via Gizmodo)

    Fediverse Reactions
  • Lung Flows

    Lung Flows

    When a fluid coats the inner walls of a cylinder, it can move downward in what’s called a collar flow. In our airways, a sinking collar flow can thicken as it falls, eventually blocking the airway completely.

    In a Newtonian fluid, this thickening during motion is essentially unavoidable; any small disturbance to the fluid will make its thickness change. But in a viscoplastic fluid–one more akin to the mucus in our airways–researchers found that, below a critical film thickness, the collar flow won’t thicken to form a blockage. (Image and research credit: J. Shemilt et al.; via APS)

    Fediverse Reactions
  • Featured Video Play Icon

    Ripple Bugs

    Ripple bugs are a type of water strider capable of moving at a blazing fast 120 body lengths per second across the water surface. In addition to their speed, ripple bugs are incredibly agile and are active almost constantly. Researchers believe they’ve found the insect’s secret: feather-like hydrophilic fans that spread on contact with the water. These fans help the insects push off the water and steer, but they require no effort to open and close. They’ve even adapted the technique to bio-inspired robots and seen improvements in speed, agility, and efficiency. (Video credit: Science; research credit: V. Ortega-Jimenez et al.)

    Fediverse Reactions
  • Panama’s Missing Pacific Upwelling

    Panama’s Missing Pacific Upwelling

    Strong seasonal winds blowing from the Atlantic typically push water away from Panama’s Pacific coast, allowing deeper, colder waters to rise up. This upwelling cools reefs and feeds phytoplankton blooms, both of which support the rich marine life found there. But in early 2025, the upwelling didn’t occur.

    Normally, coastal ocean temperatures drop to about 19 degrees Celsius during upwelling. Instead, temperatures only reached 23.3 degrees at their coolest. Wind seems to be the missing ingredient: winds from the Atlantic side were short-lived and 74% less frequent than in typical years.

    That lack of upwelling is expected to carry consequences to Panama’s economy. About 95% of the country’s fishing catch comes from the Pacific side, so any drop in fish populations will be felt. The open question remains: was the missing upwelling a singular extreme event or a harbinger of a new normal? (Image credit: R. Heuvel; research credit: A. O’Dea et al.; via Eos)

    Fediverse Reactions