Ferrofluids are a colloid consisting of magnetically sensitive nanoparticles suspended in a carrier liquid, like oil. They’re often associated with a distinctive spiky appearance when exposed to a magnet, but this isn’t their only magnetic response. Above we see a ferrofluid confined to a Hele-Shaw cell – essentially two glass plates with a small gap between them. In the upper image, the ferrofluid is exposed first to an axial magnetic field, which stretches it to form spidery arms. Then the magnetic field switches to a rotating configuration, which curls the arms around and causes the ferrofluid to slowly rotate.
In the lower image, you see the reverse. First, the ferrofluid feels a rotating magnetic field. When this is changed to an axial field, the ferrofluid bursts into a cell-like center with straight arms. As the magnitude of the axial field increases further, the arms begin to curl. For more fantastical ferrofluid formations, check out these previous posts featuring artists Linden Gledhill and Fabian Oefner. (Image credit: M. Zahn and C. Lorenz, source; via Ashlyn N.)