Maze-Solving Droplets

Featured Video Play Icon

The Leidenfrost effect occurs when liquids come in contact with a substrate much, much hotter than their boiling temperature. Rather than immediately boiling away, a thin layer of the liquid vaporizes and insulates the bulk of the liquid from the heat. This essentially turns droplets into tiny hovercrafts that skate over the surface. If you use a rough surface with rachets, the Leidenfrost drops will self-propel toward the steepest part of the rachet. The vapor underneath the drop is constantly trying to flow away, and the rachets in the surface prevent the vapor from escaping in the steeper direction. The vapor instead flows out the shallower side and–thanks to Newton’s third law–creates thrust that pushes the droplet the opposite direction. Here students from the University of Bath have used these effects to build a maze through which the droplets fly. (Video credit: C. Cheng et al.; via Flow Visualization FB page and several submissions)

For readers at Texas A&M University, I will be giving a talk Wednesday, October 2nd entitled “The Beauty of the Flow” as part of the Applied Mathematics Undergraduate Seminar series at 17:45 in BLOC 164.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: