Tag: liquid jet

  • Never Break the Chain

    Never Break the Chain

    Pour water out of a bottle, and you’ll see a jet with a shape that resembles chain links. Sometimes known as a “liquid chain,” this phenomenon occurs when water pours through a non-circular hole. It’s quite a complex behavior, as shown in this recent study of the nonlinear effect. Even so, the authors found that the amplitude and wavelength of the chain’s sections are tied directly to the shape of the opening. Current models of the effect don’t account for the viscosity of the liquid, though, so future experiments will have to explore how fluids other than water behave. (Image and research credit: D. Jordan et al.; via APS Physics; submitted by Kam-Yung Soh)

    A comparison of oscillating jet shapes and metal chains.
    A comparison of an oscillating jet’s shape and metal chains. Each view is rotated 45 degrees from the one before.
  • Wrapping Rivulets

    Wrapping Rivulets

    Tea lovers have long been frustrated by the tendency of liquid jets to adhere to solid surfaces – the so-called teapot effect that makes the last vestiges of every pour drip down the spout. By investigating the effect with vertical rods, researchers found that, at low enough flow rates, a liquid jet is able to adhere completely, forming a liquid helix that coils around the rod. The authors were also able to construct a mathematical model to capture the behavior. They concluded that both the wettability of a surface and the curvature of the solid are critical to determining whether or not a liquid jet will stick. (Image and research credit: E. Jambon-Puillet et al.; via APS Physics; submitted by Kam-Yung Soh)

  • Rotating Jet

    Rotating Jet

    This photo, one of the winners of the Engineering and Physical Sciences Research Council’s (EPSRC) annual photography contest, shows a rotating viscoelastic jet. Rotating liquid jets are common to many manufacturing processes, and their sometimes-wild appearance comes from a balance of gravitational forces and centrifugal force against surface tension. But because this fluid contains a small amount of polymer additive, surface tension has the additional aid of some elasticity to help hold the jet together and keep the globules and ligaments you see from flying off. As centrifugal forces fling the fluid outward, it stretches the polymer chains within the fluid, and they pull back against that tension like a stretched rubber band. To see some of the other contest winners–including other fluids entries!–check out the Guardian’s run-down. (Image credit and submission: O. Matar et al., ICL press release)

  • Fishbones

    Fishbones

    When two liquid jets collide, they can form an array of shapes ranging from a chain-like stream or a liquid sheet to a fishbone-type structure of periodic droplets. This series of images show the collision of two viscoelastic jets–in which polymer additives give the fluids elasticity properties unlike those of familiar Newtonian fluids like water. The jet velocities increase with each image, changing the behavior from a fluid chain (a and b); to a fishbone structure (c and d); to a smooth liquid sheet (e); to a fluttering sheet (f and g); to a disintegrating ruffled sheet (h), and finally a violently flapping sheet (i and j). The behavior of such jets is of particular interest in problems of atomization, where it can be desirable to break an incoming stream of liquid up into droplets as quickly as possible. (Photo credit: S. Jung et al.)

  • Swirling Jets

    Swirling Jets

    In fluid dynamics, we like to classify flows as laminar–smooth and orderly–or turbulent–chaotic and seemingly random–but rarely is any given flow one or the other. Many flows start out laminar and then transition to turbulence. Often this is due to the introduction of a tiny perturbation which grows due to the flow’s instability and ultimately provokes transition. An instability can typically take more than one form in a given flow, based on the characteristic lengths, velocities, etc. of the flow, and we classify these as instability modes. In the case of the vertical rotating viscous liquid jet shown above, the rotation rate separates one mode (n) from another.  As the mode and rotation rate increase, the shape assumed by the rotating liquid becomes more complicated. Within each of these columns, though, we can also observe the transition process. Key features are labeled in the still photograph of the n=4 mode shown below. Initially, the column is smooth and uniform, then small vertical striations appear, developing into sheets that wrap around the jet. But this shape is also unstable and a secondary instability forms on the liquid rim, which causes the formation of droplets that stretch outward on ligaments. Ultimately, these droplets will overcome the surface tension holding them to the jet and the flow will atomize. (Video and photo credits: J. P. Kubitschek and P. D. Weidman)

  • The Supersonic Plonk

    The Supersonic Plonk

    Everyone knows the familiar plonk of a stone falling into a pond but few realize the complexity of the physics.  When a solid object falls into a pool, a sheet of liquid, the crown splash, is sent upward.  Simultaneously, the object pulls a cavity of air down with it. As the water moves inward, this cavity is pinched, creating an hourglass-like shape reminiscent of the shape of a rocket’s nozzle. As the diameter of that pinched cavity shrinks, the velocity of the upward escaping air increases, resulting in the formation of an air jet moving faster than the speed of sound. This air jet is followed by a slower liquid jet that may rebound to a height higher than then original height of the dropped object. So next time you throw a stone into a pond, enjoy the knowledge that you’ve broken the sound barrier. (Photo credit: D. van der Meer; see also Physics World)

  • Featured Video Play Icon

    Jet Collisions

    When two jets of liquid collide, they form a sheet of fluid.  As the speeds of the jets change, the sheet can become unstable, forming a set of liquid ligaments and droplets that look like a fish’s bones. This is shown in the video above. For purposes of orienting yourself, flow in the video is moving right to left and the video has been rotated 90-degrees clockwise (i.e. the two out-of-frame jets forming the flow seen are falling due to gravity). (Video credit: Sungjune Jung, University of Cambridge)

  • Featured Video Play Icon

    Breaking up in Crossflow

    This video shows some instabilities that occur when a liquid jet impinges on a flowing cross stream. Note how the jet breaks down into droplets in a fashion similar to the Plateau-Rayleigh instability but the broken tip remains stable for some time thereafter. #