Tag: ignition

  • Lighting Engines

    Lighting Engines

    Combustion is complicated. You’ve ideally got turbulent flow, acoustic waves, and chemistry all happening at once. With so much going on, it’s a challenge to sort out the physics that makes one ignition attempt work while another fails. The animations here show a numerical simulation of combustion in a turbulent mixing layer. The grayscale indicates density contours of a hydrogen-air mixture. The top layer is moving left to right, and the lower layer moves right to left. This sets up some very turbulent mixing, visible in middle as multi-scale eddies turning over on one another.

    Ignition starts near the center in each simulation, sending out a blast wave due to the sudden energy release. Flames are shown in yellow and red. As the flow catches fire, more blast waves appear and reflect. But while the combustion is sustained in the upper simulation, the flame is extinguished by turbulence in the lower one. This illustrates another challenge engineers face: turbulence is necessary to mix the fuel and oxidizer, but turbulence in the wrong place at the wrong time can put out an engine. (Image, research, and submission credit: J. Capecelatro, sources 1, 2)

    image
  • Featured Video Play Icon

    The Airbag’s Inflation

    Airbags have become a standard safety feature for automobiles. As the Slow Mo Guys demonstrate in the video above, the bags inflate incredibly quickly–less than 1/25th of a second! The incredible speed of the system’s deployment is what keeps the car’s occupants from slamming into the hard surfaces of the wheel or dashboard. But this only works if the passenger is far enough away that the airbag is inflated before they contact it. Because the bag inflates so quickly, it does so with enormous force, like the airbag in the video flinging the glass of water. When a car registers a crash, it sparks the ignitor of a solid-propellant inflator, initiating a chemical reaction that produces the nitrogen gas that fills the airbag. This is essentially the same process as a solid-propellant rocket. (Video credit: The Slow Mo Guys)

  • Featured Video Play Icon

    Detonation in a Bubble

    Accidental releases of combustible gases in unconfined spaces can be difficult to recreate in a laboratory environment.  Here researchers simulate the conditions using detonation inside a soap film bubble. Combustible gases are pumped inside the soap film and then a spark creates ignition. The resulting flame propagation is visualized using high-speed schlieren photography, making the density gradients in the flame visible. When the mixture of hydrogen fuel to air is balanced, the flame is spherically symmetric with a high flame speed.  In contrast, weaker mixtures of fuel/air produce slow flame speeds and mushroom-like flames that leave behind unreacted fuel.  This is due to buoyant effects; the time scale associated with buoyancy is smaller than that of the flame speed and chemical reactions when the fuel/air mixture is lean.  (Video credit: L. Leblanc et al.)

  • Featured Video Play Icon

    Relighting a Candle

    When a candle is blown out, a buoyant plume of unburned fuel/air mixture continues to rise for several seconds. By bringing a combustion source close to the plume, the mixture can ignite and flames will propagate back down to the candle wick to reignite it. Watch the slow motion replay near the end of the video and you can actually see the flame front propagate downward. (Video credit: G. Casavan, University of Colorado)

  • Featured Video Play Icon

    Fireball in Slow Motion

    The high-speed video above shows an atomized spray of flammable liquid being ignited using a lighter.  It was filmed at 10,000 fps and is replayed at 30 fps. Although uncontained, this demonstration is similar to the combustion observed inside of many types of engines.  Automobiles, jet engines, and rockets all break their liquid fuel into a spray of droplets to increase the efficiency of combustion.  The turbulence of the flames dances and swirls, with small-scale motions close to the sprayed droplets and larger-scale motions around the vaporized fuel. This variation in size of the scales of motion is a hallmark feature of turbulence and can be used to characterize a flow.

  • Featured Video Play Icon

    The Invisible Forces Behind a Lighter

    This high-speed schlieren video reveals the ignition of a butane lighter.  The schlieren optical technique exaggerates differences in refractive index caused by density variations, enabling experimentalists to see thermal eddies, shock waves, and other phenomena invisible to the naked eye. Here a jet of butane shoots upward from the lighter as a valve is released. Then the spark from the lighter ignites the butane gas near the bottom of the jet. A flame front the propagates outward and upward, completing the lighting process. (submitted by @Mark_K_Quinn)

  • Featured Video Play Icon

    Diesel Ignition

    In a diesel engine, ignition of the injected fuel occurs due to the heat caused by the compression of the fuel/air mixture. (In petrol/gasoline engines, spark plugs are used for ignition.) The subsequent expansion of gases drives the pistons of the engine downward, creating mechanical energy. This high-speed video shows the in-cylinder combustion within a diesel engine. Note the symmetry and vorticity of the flow.