Tag: Leidenfrost effect

  • Featured Video Play Icon

    Self-Propelled Droplets

    Leidenfrost drops hover and move above hot surfaces on a thin layer of their own vapor. Over a flat surface, this vapor flows radially out from under the droplet, but creating rachets in the surface forces the vapor to flow in a single direction. The vapor then acts like exhaust, generating propulsion in the droplet and making it roll. How quickly the drop moves depends both on the droplet’s size and the rachets’ aspect ratio. For a given length, deeper rachets propel a drop faster than their shallower counterparts. The droplet’s size also affects the thrust with different scalings depending on the drop’s initial size. Like all of this week’s videos, this video is an entry in the 2013 Gallery of Fluid Motion. (Video credit: A. G. Marin et al.)

  • Featured Video Play Icon

    Maze-Solving Droplets

    The Leidenfrost effect occurs when liquids come in contact with a substrate much, much hotter than their boiling temperature. Rather than immediately boiling away, a thin layer of the liquid vaporizes and insulates the bulk of the liquid from the heat. This essentially turns droplets into tiny hovercrafts that skate over the surface. If you use a rough surface with rachets, the Leidenfrost drops will self-propel toward the steepest part of the rachet. The vapor underneath the drop is constantly trying to flow away, and the rachets in the surface prevent the vapor from escaping in the steeper direction. The vapor instead flows out the shallower side and–thanks to Newton’s third law–creates thrust that pushes the droplet the opposite direction. Here students from the University of Bath have used these effects to build a maze through which the droplets fly. (Video credit: C. Cheng et al.; via Flow Visualization FB page and several submissions)

    For readers at Texas A&M University, I will be giving a talk Wednesday, October 2nd entitled “The Beauty of the Flow” as part of the Applied Mathematics Undergraduate Seminar series at 17:45 in BLOC 164.

  • Featured Video Play Icon

    Skittering Droplets

    Water splattered onto a a hot skillet will skitter and skip across the surface on a thin layer of vapor due to the Leidenfrost effect. The partial vaporization of the droplet provides a low-friction cushion for the droplet to glide on and acts as an insulating layer that delays the vaporization of the rest of the droplet. Modernist Cuisine shows us how serene this common and sometimes explosive effect looks at 3,000 frames per second. (On the topic of cooking, you can use the Leidenfrost effect to see if your skillet is hot enough when making pancakes. If a few droplets of water skitter across the pan before sizzling away, then your pan is ready for batter!) (Video credit: Modernist Cuisine; submitted by Eban B.)

  • Featured Video Play Icon

    When Skittering Becomes Self-Propulsion

    When liquids hit a surface much hotter than their boiling point, a thin layer of gas can form between the drop and surface, allowing the drop to glide along. This Leidenfrost effect is what makes drops of water skitter across a hot pan. But what happens when the pan isn’t flat? The video above shows a Leidenfrost drop on a ratchet-like surface. Instead of gliding or skittering randomly, the drop self-propels toward the steepest section of the ratchet  This behavior allows researchers to design surfaces that guide the drops on an intended path. (Video credit: G. Lagubeau and D. Quéré)

  • Featured Video Play Icon

    Hot Items Sink Faster

    This combined video shows the fall of a heated centimeter-sized steel sphere through water. From left to right, the sphere is at 25 degrees C (left), 110 degrees C (middle), and 180 degrees C, demonstrating how the Leidenfrost effect–which vaporizes the water in immediate contact with the sphere–can substantially reduce the drag on a submerged object. In the middle video, the vaporization of the water around the sphere is sporadic and incomplete, only slightly reducing the sphere’s drag relative to the room temperature case. The much hotter sphere on the right, however, has a complete layer of vapor surrounding it, allowing it to travel through a gas rather than the denser liquid. (Video credit: I. Vakarelski and S. Thoroddsen; from a review by D. Quere)

  • Featured Video Play Icon

    Leidenfrost Explosions

    When a drop of water touches a very hot pan, it will skitter across the surface on a thin layer of water vapor due to the Leidenfrost effect. But what happens when another chemical is added to the droplet? Researchers find that adding a surfactant to the water droplets creates some spectacular results. As the water evaporates, the concentration of the surfactant in the droplet increases causing the surfactant to form a shell around the droplet. The pressure inside the droplet increases until the shell breaks in a miniature explosion much like the popping of popcorn. (Video credit: F. Moreau et al.)

  • Featured Video Play Icon

    Dribbling Droplets

    Ethanol droplets on a hot copper plate bounce under the influence of electrostatic forces from a charged rod. The temperature of the plate is high enough that the droplet is supported by a thin vapor film, which is what keeps it from wetting the plate.  Ethanol does not have the strong polarity that water does, but the hydroxyl group on one end does make it susceptible to the electrostatic charge built up on the teflon rod.  As a result, the droplets oscillate under electrostatic and gravitational forces, resulting in a dribbling effect. (Video credit: S. Wildeman et al.)

  • Featured Video Play Icon

    Dynamic Leidenfrost Impact

    The Leidenfrost effect occurs when a liquid encounters a solid object much hotter than the liquid’s boiling point, like when water skitters on a hot griddle or someone plunges a hand in liquid nitrogen.  A thin layer of vapor forms between the liquid and the solid, thereby (briefly) insulating the remaining liquid. The Leidenfrost effect can be static–like a droplet sitting on a pan–or dynamic, like the video above in which a droplet impacts the hot object.  The video shows both a top and a side view of a droplet striking a plate that is over five times hotter than the liquid’s boiling point.  On impact, the droplet spreads and flattens, and a spray of even tinier droplets is ejected before rebound. (Video credit: T. Tran and D. Lohse, from a review by D. Quere)

  • Featured Video Play Icon

    Leidenfrost Dynamics

    When a liquid impacts a solid heated well above the liquid’s boiling point, droplets can form, levitating on a thin film of vapor that helps insulate them from the heat of the solid. This is known as the Leidenfrost effect. Here a very large Leidenfrost droplet is shown from the side in high-speed. A vapor chimney forms beneath the drop, causing the dome in the liquid. When the dome bursts, the droplet momentarily forms a torus before closing. The resulting oscillatory waves in the droplet are spectacular. The same behavior can be viewed from above in this video. (Video credit: D. Soto and R. Thevenin; from an upcoming review by D. Quere)

  • Featured Video Play Icon

    Boiling Without Bubbles

    Water droplets sprinkled on a sufficiently hot frying pan will skitter and skate across the surface on a thin layer of vapor due to the Leidenfrost effect. When a solid object is much warmer than a liquid’s boiling temperature, the surface is surrounded by a vapor cloud until the solid cools to the point that the vapor can no longer be sustained. Then the vapor breaks down in an explosive boiling full of bubbles.  Unless, as researchers have just published in Nature, the solid is treated with a superhydrophobic coating. The water-repellent surface prevents the bubbling, even as the sphere cools. The technique could be used to reduce drag in applications like the channels of a microfluidic device. (Video credit: I. Vakarelski et al.; see also Nature News; submitted by Bobby E)