Geological evidence shows that millions of years ago, the Mediterranean Sea nearly dried out. In fluid mechanics, we’d describe this problem using one of our fundamental equations: conservation of mass, also known as continuity.
Imagine a volume containing the entire Mediterranean. To describe the amount of sea water in that volume, you need to keep track of two major quantities: how much water is flowing into the volume and how much is leaving it. For the prehistoric (as well as today’s) Mediterranean, the sources feeding the sea are 1) an inflow from the Atlantic through the Strait of Gibraltar; 2) inflows from rivers; and 3) rainfall. Water is lost primarily to evaporation.
As explained in the video, the Mediterranean’s dry spell was heralded by tectonic changes that sealed the Strait of Gibraltar, depriving it of its largest source of inflow. At the same time, warmer temperatures and less rainfall reduced influx from rivers and the atmosphere while increasing evaporation rates. The result? Water levels in the Mediterranean dropped by hundreds of meters, creating massive salt deposits, wiping out native marine life, and allowing mass migration by land-dwelling animals. Eventually, though, the Strait re-opened, creating what might have been a massive flood. (Video and image credits: PBS Eons)