Though most plants don’t move at speeds that we humans notice, many plants are remarkably active, as seen in the timelapse animations above. Much of this motion is driven by water flow inside the plant. The two plants above are phototropic–they move in response to light. The motion is actuated via a specialized motor cell called the pulvinus, which is located at the base of the leaf where it meets the stem. Unlike animal cells, plant cells have stiff outer walls that allow them to maintain an internal pressure–or turgor pressure–that differs from the outside environment. In fact, it’s not unusual for a plant’s cell to hold a pressure equivalent to 5 atmospheres! The plant manipulates this turgor pressure by controlling the transport of ions across cell membranes. Pump more ions into a cell, and osmosis will cause water to flow into the area of high solute (ion) concentration. This causes the cell to swell and raises the turgor pressure, resulting in the plant’s leaf moving. (Image credit: L. Miller and A. Hoover, source; additional research credit: J. Dumais and Y. Forterre)
Celebrating the physics of all that flows