Tag: tears of wine

  • Featured Video Play Icon

    Inside Tears of Wine

    Pour wine or liquor into a glass, give it swirl, and you can watch as droplets form and dance on the walls. This well-known phenomena, often called “tears” or “legs” in wine, results from an interplay of surface tension and evaporation. Despite its common occurrence, researchers are still discovering interesting subtleties in the physics, as seen in new research on the subject.  

    Dianna walks you through the phenomenon step-by-step in this video. The key piece of physics is the Marangoni effect, the tendency of regions with high surface tension to pull flow from areas with lower surface tension. In the wine glass, evaporation creates this surface tension gradient by removing alcohol more quickly from the meniscus than the bulk. That sets up the gradient that lets the wine climb the glass. By preventing or delaying that evaporation, we can see other neat effects, too, like shock fronts that travel through the film. (Video credit: Physics Girl; research credit: Y. Dukler et al.)

  • Featured Video Play Icon

    Tears of Wine

    Give your wine glass a swirl and afterward you may notice little rivulets of wine along the side of your glass. These so-called “tears of wine” or “wine legs” are caused by a combination of evaporation, surface tension, and gravity. After the glass has been swirled, alcohol from the thin layer of wine on the glass wall quickly evaporates, leaving behind a fluid that is more watery than the wine in the glass. Since water has a higher surface tension than alcohol or wine, it pulls more fluid up the wall via the Marangoni effect. This carries on until enough wine is pulled up to form a droplet that’s heavy enough to slide down the glass. This up-and-down exchange of fluid is nicely illustrated in the video above, where the tiny particles in the wine help show how flow gets drawn up even as your eye follows the drops sliding down. (Video credit: A. Athanassiadis and K. Khalil; submitted by Thanasi A.)

    Special thanks to our Patreon patrons, who help keep FYFD up and running.

  • Featured Video Play Icon

    Tears of Wine

    Wine drinkers may be familiar with the “tears of wine” often seen on the wall’s of a glass. The effect is a combination of evaporation and surface tension. As the low-surface-tension alcohol evaporates from the wine film left by swirling the glass, the higher local surface tension draws wine up the walls of the glass. Eventually enough wine gathers that droplets form and slide back down. This timelapse video shows how the beads form and move, almost dancing around the glass. The video’s author, Dan Quinn, has a second video with an awesome visual explanation of the behavior that’s well worth watching, too! (Video credit and submission: D. Quinn)

  • Tears of Wine

    Tears of Wine

    Physicist Richard Feynman once famously ended a lecture by describing how the whole universe can be found in a glass of wine. And there is certainly plenty of fluid dynamics in one. In the photo above, we see in the shadows how a film of wine drips down into the main pool below. This effect is known by many names, including tears of wine and wine legs; it can also be found in other high alcohol content beverages. Several effects are at play. Capillary action, the same effect that allows plants to draw water up from their roots, helps the wine flow up the wall of the glass. At the same time, the alcohol in this wine film evaporates faster than the water, raising the surface tension of the wine film relative to the main pool of wine below. Because of this gradient in surface tension, the wine will tend to flow up the walls of the glass away from the area of lower surface tension. This Marangoni effect also helps draw the wine upward. When the weight of the wine film is too great for capillary action and surface tension to hold it in place, droplets of wine–the legs themselves–flow back downward. (Photo credit: Greg Emel)

  • Microgravity Marangoni

    Microgravity Marangoni

    Astronauts are preparing an experiment on the Marangoni effect, in which a variation in surface tension can cause mass flow, for flight aboard the International Space Station. The effect, also responsible for causing tears of wine, will benefit from study in microgravity because competing effects like gravity-induced sedimentation and buoyant convection will be negligible. Astronaut Ron Garan reports more on the upcoming experiment on the Fragile Oasis blog.

  • Tears of Wine

    Tears of Wine

    Tears of wine are caused by the Marangoni effect, in which a gradient in surface tension causes mass flow. The water in the wine has a higher surface tension than the alcohol in the wine, causing the wine to be drawn away from regions of higher alcohol concentration. #