Tag: magnetohydrodynamics

  • The Twin Roles of Turbulence in Fusion

    The Twin Roles of Turbulence in Fusion

    Inside a fusion reactor, magnetically-contained plasma gets heated to more than one hundred million degrees. That heat, researchers observed, spreads much faster than originally predicted. Now a team from Japan has measurements showing how turbulence manages this feat.

    The researchers show that the multiscale nature of turbulence allows it to transport heat in two ways. The first is familiar: acting locally, turbulence spreads heat little by little as small eddies mix and pass the heat along. But turbulence can also be nonlocal, they show, able to connect physically distant parts of a flow more rapidly than expected. This happens through turbulence’s larger scales, which can rapidly carry heated plasma from one side of the vessel to another.

    The researchers illustrate the two roles of turbulence through a metaphor of American football (can you believe it?). In their metaphor, the quarterback acts as turbulence and the ball represents heat. The quarterback can pass the ball to reach distant parts of the field quickly — just as nonlocal turbulence does–or they can hand off the ball to a running back, who carries the ball down the field more slowly, through local interactions with other nearby players. (Image credit: National Institute for Fusion Science; research credit: N. Kenmochi et al., via Gizmodo and EurekAlert)

    Fediverse Reactions
  • Shining in the Sky

    Shining in the Sky

    Shades of blue, green, and purple light the Icelandic sky in this image from December 2023. Incoming solar wind particles hit oxygen and nitrogen atoms high in the atmosphere, exciting their electrons and creating this distinctive glow. We’re currently near the peak of our Sun’s 11-year solar cycle, meaning that high numbers of sunspots and outbursts will continue, likely giving us more stunning auroras like this one. (Image credit: J. Zhang; via APOD)

    An aurora in shades of blue, green, and purple.
    An aurora in shades of blue, green, and purple.

    P.S. – This post–this one right here–is FYFD’s 4000th post! When I started this blog back in 2010 as a graduate student, I never imagined that I would have so much to write about the physics of fluids. But this subject is one that just keeps on giving, so I keep on writing. Thanks for joining the fun! – Nicole

    Fediverse Reactions
  • “500,000-km  Solar Prominence Eruption”

    “500,000-km  Solar Prominence Eruption”

    It’s difficult at times to fathom the scale and power of fluid dynamics beyond our day-to-day lives. Here, twists of the Sun‘s magnetic field propel a jet of plasma more than 500,000 kilometers out from its surface in an enormous solar prominence eruption. To give you a sense of scale for this random solar burp, that’s bigger than ten times the distance to satellites in geostationary orbit. (Image credit: P. Chou; via Colossal)

  • Wobbling Plasma Could Help Planets Grow

    Wobbling Plasma Could Help Planets Grow

    To form planets, the dust and gas around a star has to start clumping up. While there are many theories as to how this could happen, it’s a difficult process to observe. A recent study shows that a magnetorotational (MR) instability could do the job.

    The team used a Taylor-Couette set-up (where an inner cylinder rotates inside an outer cylinder) filled with a liquid metal alloy. With the cylinders moving relative to one another at over 2,000 rotations per minute, the team measured how the magnetic field changed in the churning fluid. Parts of the liquid metal formed free shear layers, and within these, the MR instability occurred, causing some regions to slow down and others to speed up.

    The experiments suggest that triggering a MR instability is easier to achieve than once thought, which supports the possibility that it occurs in protoplanetary disks, helping to drive dust together into planets. (Image credit: ALMA/ESO/NAOJ/NRAO; research credit: Y. Wang et al.; via Eos)

    Fediverse Reactions
  • Our Best Look Yet at a Solar Flare

    Our Best Look Yet at a Solar Flare

    Scientists have unveiled the sharpest images ever captured of a solar flare. Taken by the Inouye Solar Telescope, the image includes coronal loop strands as small as 48 kilometers wide and 21 kilometers thick–the smallest ones ever imaged. The width of the overall image is about 4 Earth diameters. The captured flare belongs to the most powerful class of flares, the X class. Catching such a strong flare under the perfect observation conditions is a wonderful stroke of luck.

    Although astronomers had theorized that coronal loops included this fine-scale structure, the Inouye Solar Telescope is the first instrument with the resolution to directly observe structures of this size. Confirming their existence is a big step forward for those working to understand the details of our Sun. (Video and image credit: NSF/NSO/AURA; research credit: C. Tamburri et al.; via Gizmodo)

  • Zoom Into the Sun

    Zoom Into the Sun

    Fall into our nearest star in this gorgeous high-resolution view of the Sun. Taken by Solar Orbiter, a joint NASA-ESA mission, the image stretches from the fiery photosphere — full of filaments and prominences — to the wispy yet unbelievably hot corona. It’s well worth clicking through to zoom in and around the full size image. (Image credit: ESA & NASA/Solar Orbiter/EUI Team, E. Kraaikamp; via Gizmodo)

    Fediverse Reactions
  • Striations on the Sun

    Striations on the Sun

    One of the perpetual challenges for fluid dynamicists is the large range of scales we often have to consider. For something like a cloud, that means tracking not only the kilometer-size scale of the cloud, but the large eddies that are about 100 meters across and smaller ones all the way down to the scale of millimeters. In turbulent flows, all of these scales matter. That problem is even harder for something like the Sun, where the sizes range from hundreds of thousands of kilometers down to only a few kilometers.

    It’s those fine-scale features that we see captured here. This colorized image shows light and dark striations on solar granules. Scientists estimate that each one is between 20 and 50 kilometers wide. They’re reflections of the small-scale structure of the Sun’s magnetic field as it shapes the star’s hot, conductive plasma. (Image credit: NSF/NSO/AURA; research credit: D. Kuridze et al.; via Gizmodo)

    Fediverse Reactions
  • Compressing Jupiter’s Magnetosphere

    Compressing Jupiter’s Magnetosphere

    Shaped by its strong internal magnetic field and the incoming solar wind, Jupiter has the largest magnetosphere in the solar system. It also has highly active aurorae at its poles, though they are most visible in ultraviolet wavelengths. A new analysis of Juno’s data shows that on 6-7 December 2022, Jupiter’s magnetosphere got compressed, coinciding with aurorae six times brighter than usual. The compression itself came from a shock wave in the incoming solar wind. (Image credit: NASA/JPL; research credit: R. Giles et al.; via Eos)

    Fediverse Reactions
  • A Glimpse of the Solar Wind

    A Glimpse of the Solar Wind

    In December 2024, Parker Solar Probe made its closest pass yet to our Sun. In doing so, it captured the detailed images seen here, where three coronal mass ejections — giant releases of plasma, twisted by magnetic fields — collide in the Sun’s corona. Events like these shape the solar wind and the space weather that reaches us here on Earth. The biggest events can cause beautiful auroras, but they also run the risk of breaking satellites, power grids, and other infrastructure. (Image credit: NASA/Johns Hopkins APL/Naval Research Lab; video credit: NASA Goddard; via Gizmodo)

    Fediverse Reactions
  • A New Plasma Wave for Jupiter

    A New Plasma Wave for Jupiter

    Jupiter‘s North Pole has a powerful magnetic field combined with plasma that has unusually low electron densities. This combination, researchers found, gives rise to a new type of plasma wave.

    Ions in a magnetic field typically move parallel to magnetic field lines in Langmuir waves and perpendicularly to the field lines in Alfvén waves — with each wave carrying a distinctive frequency signature. But in Jupiter’s strong magnetosphere, low-density plasma does something quite different: it creates what the team is calling an Alfvén-Langmuir wave — a wave that transitions from Alfvén-like to Langmuir-like, depending on wave number and excitation from local beams of electrons.

    Although this is the first time such plasma behavior has been observed, the team suggests that other strongly-magnetized giant planets — or even stars — could also form these waves near their poles. (Image credit: NASA / JPL-Caltech / SwR I/ MSSS/G. Eason; research credit: R. Lysak et al.; via APS)

    Fediverse Reactions