Tag: hydrophilic

  • Featured Video Play Icon

    Ode to Bubbles

    Boiling water plays a major role in the steam cycles we use to generate power. One of the challenges in these systems is that it’s hard to control the rate of bubble formation when boiling. In this video, researchers demonstrate their new method for bubble control in a clever and amusing fashion. The twin keys to their success are surfactants and electricity. Surfactant molecules, like soap, have both a polar (hydrophilic) end and a non-polar (hydrophobic) end. By applying an electric field at the metal surface, the researchers can attract or repel surfactant molecules from the wall, making it either hydrophobic or hydrophilic depending on the field’s polarity. Since hydrophobic surfaces have a high rate of bubble formation, this lets the scientists essentially turn nucleation on and off with the flip of a switch! (Video credit: MIT Device Research Lab; see also: research paperMIT News Video, press release)

    Do you enjoy FYFD and want to help support it? Then please consider becoming a patron!

  • Manipulating Fluids

    Manipulating Fluids

    Combining water-repelling superhydrophobic surfaces with water-loving hydrophilic surfaces allows scientists and engineers to manipulate common fluids. Here a hydrophilic track surrounded by a superhydrophobic background collects and distributes drops of dyed water. The wetting characteristics of the surface combined with surface tension in the liquid drives the flow. No pumping or power input is necessary. This kind of manipulation of droplets can be especially useful in biomedical applications where fast-acting, low-cost devices could be used to diagnose diseases or measure blood glucose levels. (Image credit: A. Ghosh et al., via NSF; see also source video)

  • Bead-Infused Droplet

    Bead-Infused Droplet

    A Leidenfrost droplet impregnated with hydrophilic beads hovers on a thin film of its own vapor. The Leidenfrost effect occurs when a liquid touches a solid surface much, much hotter than its boiling point. Instead of boiling entirely away, part of the liquid vaporizes and the remaining liquid survives for extended periods while the vapor layer insulates it from the hot surface. Hydrophilic beads inserted into Leidenfrost water droplets initially sink and are completely enveloped by the liquid. But, as the drop evaporates, the beads self-organize, forming a monolayer that coats the surface of the drop. The outer surface of the beads drys out, trapping the beads and causing the evaporation rate to slow because less liquid is exposed. (Photo credit: L. Maquet et al.; research paper – pdf)

  • Water Entry

    Water Entry

    In the image above we see two spheres of the same size, shape, and material being dropped into water. The left sphere has almost no splash, whereas the one on the right has a spectacular curtain-like splash. Why the big difference? It all comes down to the surface treatments. The glass sphere on the left is hydrophilic, but the right one has been treated to be hydrophobic. As a result, the water-fearing molecules of that sphere push the water away, allowing air to be entrained below the water’s surface instead. This creates a big splash that’s absent when the water moves smoothly around the hydrophilic sphere. (Photo credit: L. Bocquet et al.)

  • Evaporation and Surface Effects

    Evaporation and Surface Effects

    Surface properties can have surprising effects on fluid behavior. This image shows the evaporation of several droplets over time. All of the initial droplets are of the same volume, but they are placed on a surface which is a) superhydrophobic, b) hydrophobic, or c) hydrophilic. The more hydrophobic the surface, the larger the initial contact angle between the droplet and surface and the smaller the wetted area of the surface. Yet despite this seemingly large surface area exposure to air, the droplet on the superhydrophobic surface is the slowest to evaporate. (Photo credit: C. Choi)

  • Featured Video Play Icon

    Hydrophobic Water Entry

    Many factors can affect the size and shape of the splash when an object impacts water and wettability–the ability of a liquid to maintain contact with a solid–is one of them. Here a sphere coated in a hydrophobic (water-repellent) nano-layer impacts water, creating a large air, streaky air cavity and a substantial splash.  Contrast this with the behavior of a hydrophilic sphere entering the water, and you can imagine divers might want to invest in some hydrophilic coatings prior to the London Olympics. (Video credit: L. Bocquet et al)

  • Featured Video Play Icon

    To Splash or Not to Splash?

    Hydrophobic surfaces tend to repel water while hydrophilic ones attract it. This video explores the effects that hydrophobic and hydrophilic surface coatings can have on spheres when dropped in water. There are noticeable differences in splash formation and wake shape. For more, see this research paper.