Tag: high-speed video

  • Featured Video Play Icon

    Flame Thrower Physics

    This high-speed video–which we do not recommend recreating yourself–features burning gasoline flying through the air. In addition to the sheer entertainment value, there are some neat physics. In the first segment, when they kick a tray of gasoline, one can see lovely fiery vortices forming around the backside of the tray as it’s launched. This is the start of the tray’s wake. In the latter half of the video, they launch the flaming gasoline from a bucket. Notice how the flames are in the wake while liquid gasoline streams out ahead without burning. This is because it is primarily gaseous petrol that is flammable. As the liquid fuel breaks up into droplets heated by the burning gasoline vapors nearby, the rest of the fuel changes to a vapor state and catches flame. (Video credit: The Slow Mo Guys; submitted by Will T)

  • Featured Video Play Icon

    Spray Starch

    High speed video of of spray starch from a can. Once the initial transients die down, a cone-shaped annular sheet forms.  Disturbances propagate in the sheet, tearing it into filaments that break down into droplets. Beautiful complexity hidden in a simple everyday device. (Video credit: John Savage)

  • Rebounding

    Rebounding

    A ping pong ball bounces off a puddle, drawing a liquid column upward behind it.  This photo shows the instant after the fluid has disconnected from the ball, allowing it to rebound without further loss of momentum to the fluid.  The fluid column begins to fall under gravity, the tiny undulations in its radius growing via the Rayleigh-Plateau instability and eventually causing the column to separate from the puddle.  You can see the whole process in action in this high-speed video. (Photo credit: BYU Splash Lab)

  • Featured Video Play Icon

    Cavitation in a Bottle

    Sudden changes in the pressure or temperature in a liquid can create bubbles in a process known as cavitation. Underwater explosions are just one of the ways to induce cavitation in a liquid. As identified in the above video, the shock waves traveling through the liquid force a change in pressure that creates bubbles. When these bubbles collapse, the container is subjected to an enormous oscillation in pressure, which often results in damage. The same phenomenon is responsible for damage on boat propellers as well as this beer bottle smashing trick. Check out these other high-speed videos of cavitation in a bottle: (Video credit: Destin/Smarter Every Day; submitted by Juan S.)

  • Featured Video Play Icon

    Didgeridoo Soap Bubble

    This high-speed video shows a soap bubble being blown via didgeridoo, a wind instrument developed by the Indigenous Australians. The oscillations of the capillary waves on the surface of the bubble vary with the frequency of note being played. High frequency notes excite small wavelengths, whereas lower notes create large wavelength oscillations. For more fun, check out what you can do with didgeridoos in space. (submitted by Christopher B)

  • Featured Video Play Icon

    Fireball in Slow Motion

    The high-speed video above shows an atomized spray of flammable liquid being ignited using a lighter.  It was filmed at 10,000 fps and is replayed at 30 fps. Although uncontained, this demonstration is similar to the combustion observed inside of many types of engines.  Automobiles, jet engines, and rockets all break their liquid fuel into a spray of droplets to increase the efficiency of combustion.  The turbulence of the flames dances and swirls, with small-scale motions close to the sprayed droplets and larger-scale motions around the vaporized fuel. This variation in size of the scales of motion is a hallmark feature of turbulence and can be used to characterize a flow.

  • Featured Video Play Icon

    Schlieren Montage

    Dr. Gary Settles, a world-reknown expert in schlieren photography, shows here a montage of some of his lab’s results, including shockwaves from musical instruments, dogs sniffing, guns firing (both sub- and supersonic), and even snapping a wet towel going supersonic. As Settles jokes, schlieren is all mirrors and hot air. Mirrors are used to shine collimated light on the object to be imaged; then the light focused with a lens. By placing a knife-edge at the focal point, part of the light is blocked and the density variations in the final image become visible, thanks to their differing refractive indices. (Video credit: G. Settles et al.)

  • Featured Video Play Icon

    Soap Bubbles Bursting

    To the human eye, the burst of a soap bubble appears complete and instantaneous, but high-speed video reveals the directionality of the process. Surface tension is responsible for the spherical shape of the bubble, and, when the bubble is pierced, surface tension is broken, causing the soap film that was the bubble to contract like elastic that’s been stretched and released. Droplets of liquid fly out from the edges of the sheet until it atomizes completely.

  • Featured Video Play Icon

    Flapping to Fly Efficiently

    High-speed video shows that bats achieve some of their efficiency in flight by pulling their wings inward on the upstroke, as seen above. While this does affect drag forces on the wing slightly, the primary energy savings comes from the inertial ease of lifting the folded wing. Much the way it is easier to lift your arm when it is folded than when you stretch it outright, it takes less energy for the bat to lift a folded wing than one that is fully extended. (via Wired Science)

  • Featured Video Play Icon

    Vibrating Oil

    This high-speed video shows the behavior of oil on a vibrating surface. As the amplitude of the vibration is altered various behaviors can be observed. Initially small waves appear on the surface of the oil, then the surface erupts into a mass of jets and ejected droplets, reminiscent of a vibrated interfaces within a prism or vibration-induced atomization. When the amplitude is reduced after about half a minute, we see Faraday waves across the surface, as well as tiny droplets that bounce and skitter across the surface. They are kept from coalescing by a thin layer of air trapped between the droplet and the oil pool below. Because of the vibration, the air layer is continuously refreshed, keeping the droplet aloft until its kinetic energy is large enough that it impacts the surface of the oil and gets swallowed up.