Search results for: “supersonic”

  • White Hole Analogues

    White Hole Analogues

    A white hole–the cosmological opposite of a black hole–is a singularity from which matter emerges but which matter can never enter from beyond the event horizon. Hydraulic jumps, those rings that sometimes appear in the kitchen sink, turn out to be a physical analog of this behavior. The photo above shows a hydraulic jump with a needle placed inside the event horizon. In the wake of a needle, there’s a Mach cone, just like when an object moves faster than the speed of sound. For more, see the Photonist. (via freshphotons)

    Note that we mentioned this item a few months ago, but the full paper has just been published.

  • Air Force Gears Up For Hypersonic Missile Test

    Air Force Gears Up For Hypersonic Missile Test

  • Featured Video Play Icon

    Starting a Rocket

    This computational fluid dynamics (CFD) simulation shows the start-up of a two-dimensional, ideal rocket nozzle. Starting a rocket engine or supersonic wind tunnel is more complicated than its subsonic counterpart because it’s necessary for a shockwave to pass completely through the engine (or tunnel), leaving supersonic flow in its wake. Here the situation is further complicated by turbulent boundary layers along the nozzle walls. (Video credit: B. Olson)

  • Airplanes Creating Snow

    Airplanes Creating Snow

    Scientists now think that that airplanes may be responsible for increasing local snowfall by flash-freezing supercooled water vapor in clouds. Water droplets can persist in the atmosphere to temperatures of -42 degrees Celsius. But when an airplane’s wing passes through moist air, the acceleration of the air passing over the wing causes a pressure decrease that can drop the temperature by as much as 19 C, causing the water droplets to form ice crystals immediately. (The particulate matter in the aircraft exhaust probably also aids this process.) The same behavior can also create holes in clouds and cause ice to form on the wings. # (Related behavior: vapor cones)

    Photo credit: lhoon

  • Featured Video Play Icon

    Mach Diamonds

    Joe asks:

    Why does this rocket have that repeating pattern in its exhaust? I’m amazed that it’s so stable for so far as distance from the nozzle.

    Excellent question! The diamond-shaped pattern seen in the rocket’s exhaust is actually a series of reflected shock waves and expansion fans. The rocket’s nozzle is designed to be efficient at high altitudes, which means that, at its nominal design altitude, the shape of the nozzle is such that the exhaust gases will be expanded to the same pressure as the ambient atmosphere. At sea level, the nozzle is overexpanded, meaning that the exhaust gases have been expanded to a lower pressure than the ambient. The supersonic exhaust has to reach ambient pressure, and it does so through an oblique shock right at the exit of the nozzle. However, the oblique shock, in addition to raising the pressure, turns the gases toward the exhaust centerline. To ensure flow symmetry, two additional oblique shocks form. But then the exhaust is at a higher pressure than ambient. Expansion fans form to reduce the pressure, but those, too, affect the direction the exhaust gases flow. The pattern, then, is a series of progressively weaker oblique shocks and expansion fans that raise the exhaust gas pressure to that of the ambient atmosphere.

  • Featured Video Play Icon

    Seeing the Invisible

    Schlieren photography is a common experimental flow visualization technique, especially in supersonic flows (where it enables one to see shock waves). Here the Science Channel’s “Cool Stuff: How It Works” show explains the technique and shows some examples from everyday life.

  • Shock Waves From a Gun

    Shock Waves From a Gun

    Often fluid motion is invisible to the human eye. Researchers use techniques like schlieren photography to make changes in fluid density apparent. In this high-speed schlieren photo, an AK-47 is being fired. The spherical shock wave centered on the gun’s muzzle is due to the explosive discharge of gases used to fire the bullet.  At the left of the frame, the bullet also causes a shock wave, this time a conical one, as it travels supersonically out of the gun.

    Photo Source; Credit: Gary Settles, Penn State Gas Dynamics Lab