Tag: wind tunnels

  • The Olympic Torch

    [original media no longer available]

    Today marks the beginning of the 2012 Olympic Games in London. In the opening ceremony, the Olympic flame will complete its journey from Olympia to London, having been carried by some 8,000 torch bearers. Modern Olympic torches are expected to withstand wind, rain, snow, and human error to keep the flame alive and are specially designed and tested for these conditions. Each individual torch is fueled by a mixture of propane and butane stored as a pressurized liquid. The liquid fuel travels through a series of evaporation coils around the burner before combustion. Each torch carries sufficient fuel to burn about fourteen minutes. In addition to computer simulation, the 2012 Olympic torch design was tested in BMW’s Environmental Wind Tunnel to ensure a visible, stable flame for orientations within 45 degrees of vertical in conditions ranging from -5 degrees to 40 degrees Celsius, rain, snow, 35 mph winds, and 50 mph wind gusts. For more on the current torch and previous designs, see How Stuff Works, E&T, and the BBC.

    FYFD is celebrating the Olympics by featuring the role of fluid dynamics in sports starting Monday. If you have any burning questions, feel free to ask or email!

  • Featured Video Play Icon

    Examples of Flutter

    Aeroelasticity is the study of the interaction of structural and aerodynamic forces on an object, and its most famous example is flutter, which occurs when the aerodynamic forces on an object couple with its natural structural frequencies in such a way that a violent self-excited oscillation builds. What does that mean? Take a look at the video above. This compilation shows examples of flutter on wind tunnel models, road signs, airplanes, and the Tacoma Narrows Bridge–one of the most famous examples of all time. When air moves over and around an object, like a stop sign, it exerts forces that cause the structure to twist or vibrate. Those vibrations then alter the airflow around the object, which changes the aerodynamic forces on the object.  If the motion of the object increases the aerodynamic forces which then increase the oscillation, then a potentially destructive flutter cycle has been created. Flutter is very difficult to simulate computationally, so tests are usually performed experimentally to ensure that any vibrations in the system will damp out rather than grow to the point of structural failure like many of the examples in the film.

  • Featured Video Play Icon

    Wind Tunneling Testing for BASE Jumpers

    While we usually think of wind tunnel testing airplane models, the truth is that wind tunnels today test a much wider array of subjects. From oil rigs and skyscrapers to athletes and police sirens, if you can imagine it, it’s probably been stuck in a wind tunnel. This video shows some wind tunnel testing of a tracking suit used for BASE jumping. The primary focus seems to be on lift and drag at angle of attack–which can be used to determine glide ratios for the pilot–but there is also some study of localized turbulence generation, as evidenced by the use of smoke generators and the streamers attached to the suit’s arms and legs. (submitted by Jason C)

  • Featured Video Play Icon

    Skydiving Indoors

    Vertical wind tunnels like this one simulate the experience of skydiving with air speeds up to 270 km/h (168 mph). Here expert freefallers perform a routine similar to synchronized skydiving. By changing the angle and shape of their body with respect to the air flow, they are able to control their lift and drag to produce complex motion in three dimensions.

  • Tour de France Physics: Wind Tunnel Testing

    Tour de France Physics: Wind Tunnel Testing

     

    Over hours of racing, even a few grams of drag can be the difference between the top of the podium and missing out. For manufacturers as well as for individual professional cyclists, hours of wind tunnel testing help determine optimum configurations of equipment and positioning. During a day of wind tunnel testing, a cyclist may complete dozens of runs, in which bikes, wheels, helmets, skinsuits, and positioning are all tested and tweaked to find the best combination of aerodynamics.

    But wind tunnel results don’t always translate perfectly to the road, where buildings, people, cars and other cyclists may interfere with the freestream. And, as any cyclist will attest, the wind is constantly shifting and changing speeds as one rides. The Garmin-Cervelo pro team has developed a rig to measure wind speeds and angles experienced by cyclists in real world conditions. (The exact components used are unclear, but probably include some form of Pitot tube or 5-hole probe.) As more on-the-road data is collected, wind tunnel tests can be improved by placing greater emphasis on the most common wind angle conditions. (Photo credits: John Cobb, Flo Cycling, and Nico T)

    This completes FYFD’s weeklong celebration of the Tour de France and the fluid dynamics of cycling. See previous posts on drafting in the peloton, pacelining and echelons, the art of the sprint lead-out train, and the aerodynamics of time-trialing.

  • Wind Tunnel Testing

    Wind Tunnel Testing

    A scale model of the Space Shuttle attached to its modified 747 carrier hangs in a NASA wind tunnel. Wind tunnel tests can be used for flow visualization, lift and drag measurements, control system checks and so forth, but mounting models correctly and safely in the tunnel is crucial. Many models use sting mounts that project forward, as this one does, in order to expose the model to freestream flow unimpeded by the mounting mechanism. Any mounts and models must also be sturdy enough that all or part of them does not break off mid-test and fly into the wind tunnel’s fans. #

  • Tornado-Force Winds in a Wind Tunnel

    [original media no longer available]

    In order to demonstrate the effects of tornado-force winds, Fox News sent a reporter inside a wind tunnel and subjected him to 100 mph winds. Of course, actual measured winds in the recent storms topped 200 mph and four times the dynamic pressures the reporter experiences here. (via jerrodh)

  • Flow Viz of a Locust

    Flow Viz of a Locust

    Smoke visualization in a wind tunnel reveals the airflow over a flying locust. Researchers are unraveling the aerodynamics of insect flight in order to produce better Micro Air Vehicles (MAVs) and miniature flying robots. #

  • Smoke Visualization on an F-16

    Smoke Visualization on an F-16

    Flow around an F-16XL Scamp model is visualized using smoke illuminated by laser sheets. Lasers are common equipment in fluids laboratories; they’re useful for flow visualization and for many velocimetry techniques.

  • Wind Tunnel Testing

    Wind Tunnel Testing

    This photo shows a prototype of the X-48C blended wing body aircraft being tested in NASA Langley’s 12-Foot Low-Speed Tunnel. Blended wing bodies have many advantages over conventional tube-and-wing designs: the entire surface of the craft can generate lift; the usable cargo/passenger area of the craft is increased; and, structurally, the craft is easier to manufacture. Flight tests of a remote-controlled version of the craft have also taken place.