Tag: pressure

  • Plant Week: Bladderworts

    Plant Week: Bladderworts

    Carnivorous plants live in nutrient-poor environments, where clever techniques are necessary to keep their prey from getting away. The aquatic bladderwort family nabs their prey through ultra-fast suction. This starts with a slow phase (top) in which water is pumped out of the trap. Because the internal pressure is lower than the external hydrostatic pressure, this compresses the walls of the trap, and it leaves the trap’s door narrowly balanced on the edge of stability. A slight perturbation to the trigger hairs around the door will cause it to buckle. 

    That’s when things get fast. As the door buckles and the trap expands to its original volume, water gets sucked in, pulling whatever prey was nearby with it. The door reseals as the pressure inside and outside the trap equalizes, and, in only a couple milliseconds total, the bladderwort has its snack. It secretes digestive enzymes to break down what it’s caught, and over many hours, it pumps out the trap to reset it. (Image and research credit: O. Vincent et al.; submitted by David B.)

    All this week, FYFD is celebrating Plant Week. Check out our previous post on how dandelion seeds fly tens of kilometers.

  • Hydraulics Make Spiders So Creepy

    Hydraulics Make Spiders So Creepy

    There’s something about the way spiders move that many of us find inherently creepy. And that something, it turns out, is fluid dynamical. Unlike humans and other vertebrates, spiders don’t move using two sets of opposing muscles. The natural state of their multi-jointed legs causes them to flex inward. This is why dead spiders have their legs all curled up.

    To walk, spiders use hydraulic pressure. They pump a fluid called hemolymph into their legs to force them to straighten. If you look closely, you’ll notice that spiders’ legs always connect to the front section of their body. This is called the cephalothorax, and it acts like a sort of bellows that controls the pressure and flow of hemolymph. It moves the hemolymph around the spider’s body in a fraction of a second, allowing spiders to be quite fast, but something about the movement still feels off for those of us used to vertebrate motion. Happy Halloween, everyone!  (Image credit: R. Miller, source; see also; submitted by jpshoer)

  • How Trees Pull Water

    How Trees Pull Water

    Trees are incredible organisms, and the physics behind them baffled scientists until relatively recently. Inside trees, there is a constant flow of water up from the roots, through the xylem and out the leaves. We often think of atmospheric pressure and capillary action as the mechanisms for pushing water up against the force of gravity, but this is not how trees work. Instead, the evaporation of water from the tree’s leaves actually pulls the entire water column up the tree. Water molecules really like sticking to one another, which actually allows them to hold together under this tension. 

    The result of all this pulling is a negative pressure inside the tree, and, with some clever manipulation, it’s possible to measure just how negative the pressure inside a tree is using a device called a pressure bomb. You can see the whole process in action in the Science IRL video below. The magnitude of a tree’s negative pressure fluctuates over a day, depending on how quickly it’s losing water, but typical values can range from 2-3 atmospheres of negative pressure to 17 or more! To get the equivalent (positive) pressure, you’d have to be nearly 2.7 kilometers under water. (Image and video credit: Science IRL)

  • Featured Video Play Icon

    Under Pressure, Part 2

    Our adventures with pressure continue after the trip to the aquarium. To see just how much pressure we could generate with height, A.J. and I teamed up with the Corvallis Fire Department to recreate an experiment attributed to 17th-century French physicist Blaise Pascal. In Pascal’s experiment, he (supposedly) used a column of water to burst a wooden barrel. In ours, we use a ladder truck to make a 30-meter column of water burst a glass carboy! We also got a little help from our friends at the Lutetium Project to introduce you to Pascal and his work. (Thanks, Guillaume!) We’ll tell you more about Pascal and his contributions in an upcoming video, so stay tuned. (Video and image credit: A. Fillo and N. Sharp)

  • Featured Video Play Icon

    Under Pressure

    Pressure is a concept that can be unintuitive, but it’s incredibly important in physics and engineering. So I’m excited to debut a collaborative video series that @mostlyenginerd and I are producing all about hydrostatic pressure! Today’s video is one of our openers: it focuses on where pressure comes from and why it’s a function of height but not volume. And to show you just how pressure increases with depth, we teamed up with divers from the Oregon State University Scientific Diving Team and headed to the Oregon Coast Aquarium’s Halibut Flats exhibit. Ever seen what a balloon looks like 7 meters underwater? You’re about to! (Video and image credit: N. Sharp and A. Fillo)

    Want to see how this was made? Support FYFD on Patreon, and you can get access to behind-the-scenes content and a chance to see upcoming videos early!

  • Featured Video Play Icon

    The Drinking Bird

    At first glance, the drinking bird is a simple desk toy, but the physics and engineering behind the device is clever enough to have challenged many great minds. In this video, Bill Hammack dissects the drinking bird, revealing the heat engine beneath the felt and feathers. The bird’s drinking is driven by thermodynamics and the relative pressures of fluids in its head and body. When the beak is wetted, fluid wicks up the felted head and slowly evaporates, thereby cooling the vapor inside the head. Some of that vapor condenses, lowering the vapor pressure in the head and allowing liquid to rise from the body. When enough fluid reaches the head, the bird tips forward. This allows vapor to rise up the liquid column into the head, equalizing the pressure between the two ends. The bird sits up with a freshly wetted head and starts the cycle over. Check out the full video for more detail, including a look at what other methods can drive the bird, including bourbon and light bulbs. (Video and image credit: B. Hammack; via J. Ouellette)

  • Featured Video Play Icon

    An Octopus’ Handshake

    Cephalopods, especially octopuses, are fascinating creatures. At sea level, an octopus can generate an impressive pressure differential of 1 to 2 atmospheres with each of its suckers. That incredible grip is possible thanks to fluid dynamics. An octopus’s sucker consists of two main parts: the ring-shaped infundibulum on the outer surface and the inner, cup-shaped acetabulum. When the infundibulum makes contact with a surface, it creates a water-tight seal. The octopus then contracts radial muscles along the acetabulum. This expands the inner chamber. The water trapped in the acetabulum now has to take up a greater volume, causing the pressure to drop and creating suction. To let go, the octopus simply relaxes the radial muscles or contracts circular ones to reduce the chamber volume and release the suction. (Video credit: Deep Look)

  • Featured Video Play Icon

    Pascal’s Barrel Follow-Up

    fuckyeahfluiddynamics:

    Pascal’s Law tells us that pressure in a fluid depends on the height and density of the fluid. This is something that you’ve experienced firsthand if you’ve ever tried to dive in deep water. The deeper into the water you swim, the greater the pressure you feel, especially in your ears. Go deep enough and the pressure difference between your inner ear and the water becomes outright painful.

    In the video demonstration above, you’ll see how a tall, thin tube containing only 1 liter of water is able to shatter a 50-liter container of water. Not only does this show just how powerful height is in creating pressure in a fluid, but it shows how a fluid can be used to transmit pressure over a distance – one of the fundamental principles of hydraulics! (Video credit: K. Visnjic et al.; submitted by Frederik B.)

    Reader @hoosierfordman77 writes:

    “They’re pressurizing the line by using a syringe sealed to the tube.  Of course, the volume of water in the tube added to this.  But it was not the only source of pressure.  Also explaining that pressure only has one vector as in the illustration using Hoover Dam is preposterous.  Sir [sic] later stated correctly that pressure is evenly distributed through the inside of a container.  If her demonstration was correct then the pressure of the water in lake Meade is not proportional to the volume of the lake…only proportional to its depth.  Now I’ve not done testing but I do not believe a 100,000 acre lake that’s 1 foot deep would be held back by the walls of a kiddie pool that routinely handle that depth.” (emphasis added)

    Hi, hoosierfordman77, thanks for your comment! It does seem counter-intuitive that pressure in a reservoir is proportional to depth, not volume, but it is correct. If you go swimming 1 meter below the water surface, the pressure you experience is the same whether you’re in a backyard pool or the Gulf of Mexico. And, yes, a 100,000 acre lake that’s 1 foot deep has a static pressure that could be withstood by a kiddie pool.

    Now engineers don’t build it that way for a couple of reasons. 1) Pascal’s Law only describes hydrostatic forces – that is, the force experienced when the water is motionless. In reality, a dam would need to withstand not only the hydrostatic forces caused by the water’s depth but also any forces exerted when the water moves due to wind action, temperature differences, etc. And 2) after evaluating all of the expected forces a structure will endure, engineers add a factor of safety to make the structure strong enough to withstand forces above and beyond what is expected in ordinary or extraordinary operation.

    As for the syringe, it only adds additional pressure to the line if they do not allow a gap for air in the line to escape. That can be a bit of a challenge, as they acknowledge in the video when they discuss the effects of air bubbles in the line. However, there is every indication that they were aware of this potential in their demonstration and did everything they could to ensure that it was not affecting the result. The fact remains, however, that extra pressure in the line is unnecessary – the 1 liter of water’s depth alone will shatter that container.

  • Featured Video Play Icon

    Pascal’s Barrel

    Pascal’s Law tells us that pressure in a fluid depends on the height and density of the fluid. This is something that you’ve experienced firsthand if you’ve ever tried to dive in deep water. The deeper into the water you swim, the greater the pressure you feel, especially in your ears. Go deep enough and the pressure difference between your inner ear and the water becomes outright painful.

    In the video demonstration above, you’ll see how a tall, thin tube containing only 1 liter of water is able to shatter a 50-liter container of water. Not only does this show just how powerful height is in creating pressure in a fluid, but it shows how a fluid can be used to transmit pressure over a distance – one of the fundamental principles of hydraulics! (Video credit: K. Visnjic et al.; submitted by Frederik B.)

  • Featured Video Play Icon

    Air Pressure in Flight

    We live at the bottom of a sea of air, surrounded by a constant pressure equal to 101 kPa (14.7 psi) over our entire bodies. For the most part, we don’t notice the pressure air exerts on us. But if you’ve flown on a commercial airplane, you may have noticed some of the effects of changing that air pressure. Flexible sealed containers, like bags of chips or bottles of water, change their shape dramatically over the course of a flight because the air pressure inside them can be greater than the air cabin pressure at altitude. In the video above, Nick Moore measured his in-flight cabin pressure as 84 kPa (12psi), which is equivalent to about 1500 m (5000 ft) above sea level. Why do airlines keep the cabin pressure lower in flight? The biggest reason is because the airplane, like the in-flight snack, is a pressure vessel. At cruising altitudes the outside air pressure is about 24 kPa (3.5 psi). To keep the interior of the cabin habitable, the fuselage of the airplane has to hold a higher pressure. The larger the difference between the interior and exterior pressures, the greater the stress the airplane must withstand. Keeping the air pressure in flight a little lower makes the engineering a little easier and does the occupants no harm.  (Video credit: N. Moore)