Tag: flamingo

  • Flamingo Fluid Dynamics, Part 2: The Game’s a Foot

    Flamingo Fluid Dynamics, Part 2: The Game’s a Foot

    Yesterday we saw how hunting flamingos use their heads and beaks to draw out and trap various prey. Today we take another look at the same study, which shows that flamingos use their footwork, too. If you watch flamingos on a beach, in muddy waters, or in a shallow pool, you’ll see them shifting back and forth as they lift and lower their feet. In humans, we might attribute this to nervous energy, but it turns out it’s another flamingo hunting habit.

    A mechanical model of a flamingo's foot reveals how its stomping and shape change create a standing vortex.

    As a flamingo raises its foot, it draws its toes together; when it stomps down, its foot spreads outward. This morphing shape, researchers discovered, creates a standing vortex just ahead of its feet — right where it lowers its head to sample whatever hapless creatures it has caught in this swirling vortex. And the vortex, as shown below, is strong enough to trap even active swimmers, making the flamingo a hard hunter to escape. (Image credit: top – L. Yukai, others – V. Ortega-Jimenez et al.; research credit: V. Ortega-Jimenez et al.; submitted by Soh KY)

    Video showing how active swimmers can get caught in the flamingo's stomping vortex.
    Fediverse Reactions
  • Flamingo Fluid Dynamics, Part 1: A Head in the Game

    Flamingo Fluid Dynamics, Part 1: A Head in the Game

    Flamingos are unequivocally odd-looking birds with their long skinny legs, sinuous necks, and bent L-shaped beaks. They are filter-feeders, but a new study shows that they are far from passive wanderers looking for easy prey in shallow waters. Instead, flamingos are active hunters, using fluid dynamics to draw out and trap the quick-moving invertebrates they feed on. In today’s post, I’ll focus on how flamingos use their heads and beaks; next time, we’ll take a look at what they do with their feet.

    As a flamingo retracts its beak from the bottom of a water tank, a tornado-like vortex forms.

    Feeding flamingos often bob their heads out of the water. This, it turns out, is not indecision, but a strategy. Lifting its flat upper forebeak from near the bottom of a pool creates suction. That suction creates a tornado-like vortex that helps draw food particles and prey from the muddy sediment.

    As a flamingo "chatters" its mandibles, it creates suction that can pull up food.

    When feeding, flamingos will also open and close their mandibles about 12 times a second in a behavior known as chattering. This movement, as seen in the video above, creates a flow that draws particles — and even active swimmers! — toward its beak at about seven centimeters a second.

    Video showing von Karman vortices trailing from a flamingo's head when placed on the water's surface. A recirculation zone forms at the tip of its beak, enhancing capture of food.

    Staying near the surface won’t keep prey safe from flamingos, either. In slow-flowing water, the birds will set the upper surface of their forebeak on the water, tip pointed downstream. This seems counterintuitive, until you see flow visualization around the bird’s head, as above. Von Karman vortices stream off the flamingo’s head, which creates a slow-moving recirculation zone right by the tip of the bird’s beak. Brine shrimp eggs get caught in these zones, delivering themselves right to the flamingo’s mouth.

    Clearly, the flamingo is a pretty sophisticated hunter! It’s actively drawing out and trapping prey with clever fluid dynamics. Tomorrow we’ll take a look at some of its other tricks. (Image credit: top – G. Cessati, others – V. Ortega-Jimenez et al.; research credit: V. Ortega-Jimenez et al.; submitted by Soh KY)

  • Flamingo Fluid Dynamics

    Flamingo Fluid Dynamics

    Flamingos strut and dance and bob, but there’s more to these comical birds than meets the eye. Flamingos can thrive in nutrient-poor environments that other birds eschew, like salt flats and alkaline lakes. Their secret, it turns out, is a mastery of fluid dynamics.

    Researchers studying the behaviors of the Nashville Zoo’s flamingo flock discovered that their seemingly silly behaviors all had fluid dynamical consequences. When the birds stomped and danced in small circles, it stirred up the muck in the water they eat from. With their beaks below the surface, the birds then opened and closed their mouths, darting their tongues in and out; this generated suction to carry food particles toward them. Periodically, they’d bob their heads up, creating a vortex for extra suction. Even their walking, which they did while skimming the water surface with their bills facing backward, generated flows that helped carry food to their mouths. (Image credit: cshong; research credit: V. Ortega-JimΓ©nez et al.; via Science; submitted by Kam-Yung Soh)

  • Featured Video Play Icon

    Flamingo Filter-Feeding

    Flamingoes are strange and ungainly creatures, but their hooked bills make much more sense when you see them eating underwater. The birds are filter feeders, and they suck water, mud, and silt in through the front of their bills and pump it back out the sides. In between hairy structures called lamellae help them separate algae, brine shrimp and other food from the mix. Be sure to turn the sound up on the video so that you can hear the sound of flamingoes at work. (Image and video credit: San Diego Zoo; via Colossal)