Tag: clogging

  • Featured Video Play Icon

    To Clog or Not to Clog?

    The clear plastic disks use to study clogging appear rather plain — at least until you look at them through polarizers. Then the disks light up with a web of lines that reveal the unseen forces between the particles. In this video, researchers use this trick to explore how spontaneous clogs occur. If particles jam together into an arch, that bridge can be strong enough to hold the weight of all the particles above it, bringing the flow to a halt. Some arches aren’t strong enough to hold for long; they can break in moments. Other more stable arches persist. By watching the flow through polarizers and carefully tracking the ebb and flow of the forces between particles, researchers can predict which clogs will have staying power. (Video credit: B. McMillan et al.)

  • How Hagfish Slime Clogs

    How Hagfish Slime Clogs

    When attacked, the eel-like hagfish slimes its predator, clogging the fish’s gills so that it can escape. A recent study looks at just what makes the slime so effective. There are two main (non-seawater) components to hagfish slime: mucus and threads. The team’s experiments showed that the slime’s clogging is due almost entirely to the mucus; the clogging power of full slime and mucus-only slime is almost identical.

    So what are the threads for? They make it harder for the mucus to get washed away. Mucus alone isn’t able to clog as effectively after a single rinse, but, with the threads included, the slime hardly budges. That staying power makes it all the harder for a predator to clear its gills once slimed. In fact, it’s still unclear to scientists whether a slimed fish can free itself from the clogging. After all, the attacker can’t use the hagfish’s trick to free itself from slime. (Image credit: dirtsailor2003/Flickr; research credit: L. Taylor et al.)

  • The Physics of Clogging

    The Physics of Clogging

    Clogging is one of those phenomenons that we encounter constantly, from overflowing storm drains to the traffic jam at the door when a lecture ends. It happens at all scales, too; ink-jet cartridges and microfluidic circuits can jam up just as thoroughly as a grain silo. Although there are many complexities to clogging, the basic mechanisms fall into three categories: sieving, bridging, and aggregation.

    Of these, sieving is the most familiar; it occurs when a particle too large for the constriction gets stuck. That includes both a rock too large to fit down a storm drain and a leaf that gets caught in the wrong orientation.

    Bridging, on the other hand, occurs when too many small particles reach a constriction at the same time. Although each one is small enough to fit on its own, their simultaneous arrival means that they jam together into a bridge that blocks the constriction. Given time, all flow comes to a stand still, as seen in the images below.

    Sequence of images showing the formation of a particle bridge and subsequent clogging of the entire constriction.
    Sequence of images showing the formation of a particle bridge and subsequent clogging of the entire constriction.

    The last mechanism, aggregation, is a more gradual blockage, formed as individual particles begin sticking to a surface, making the constriction progressively smaller. Think of those hard-water buildups that eventually block your shower head.

    Some of these mechanisms are easier to prevent or clear than others, but researchers are making progress. For an overview of the field’s current standing, check out this Physics Today article. (Image credit: drain – R. Rampsch, bridging – D. Jeong et al.; see also B. Dincau et al. at Physics Today)

  • Ants Avoid Traffic Jams by Giving Up

    Ants Avoid Traffic Jams by Giving Up

    Both ants and traffic are well-connected to fluid dynamics, even if they are not, strictly speaking, fluids. As it happens, ant traffic has interesting implications not only for human transit but for avoiding clogs in crowds or when pouring granular materials

    Ants tend to dig narrow tunnels. This helps individual ants recover from potential slips, but it also makes clogging more likely. Researchers studying the behavior of individual ants during tunnel digging found that ants entering the tunnel often turn around without collecting a grain and carrying it away. When they encounter heavy traffic, they simply reverse direction and give up. So 70% of the work of digging was done by only 30% of the ants. This seemingly unfair division of labor actually optimizes the overall traffic flow and work output for the ants as a whole. Without this instinct to turn around and ease the jam, incoming ants would cascade the traffic and worsen the jamming. (Image and research credit: J. Aguilar et al.; see also Physics Today)

  • Featured Video Play Icon

    Clogging, In Hourglasses and Crowds

    Hourglasses are pretty common, but you’ve probably never given much thought to the way they flow. An hourglass designer has to carefully select the sizing of the neck and the grains. Choosing a neck that’s too small relative to the grain size will result in frequent clogs but choosing too large a neck will make setting the timing difficult. Interestingly, it doesn’t matter whether the hourglass is filled with air or with water–the same principle holds.

    Where this knowledge becomes especially useful, though, is when dealing with crowds. We’ve all experienced the frustration of being in a large crowd trying to fit through a small exit. Paradoxically, the fastest way to get a large number of particles (or sheep or people) through a narrow opening is to slow each individual down. This can either be done by instructing everyone to slow down or by forcing that same result by placing an obstacle immediately before the exit. The reduction in speed reduces clogging, which means everyone gets through faster! (Video credit: A. Marin et al.)