Tag: Brazil nut effect

  • The Catherine Wheel

    The Catherine Wheel

    When particles of different sizes fall in an avalanche, they separate out by size. Smaller particles form one layer with another layer of larger particles over the top. This happens because the smaller particles tend to fall in between the larger ones, similar to the percolation theory in the Brazil nut effect. In a slowly rotating drum, this size segregation during an avalanche forms a distinctive pattern (above) called a Catherine wheel pattern. Here, the gray layers form from smaller iron particles, while the white layers are large particles of sugar. Notice that the pattern starts to form during each avalanche, but it freezes in place after grains pile up against the drum wall and cause a shock wave to run back up the avalanche. (Image credit: J. Gray and V. Chugunov, reprinted in J. Gray, source)

  • Featured Video Play Icon

    Skiing, Avalanches, and Freezing Bubbles

    To wrap up our look at Olympic physics, we bring you a wintry mix of interviews with researchers, courtesy of JFM and FYFD. Learn about the research that helped French biathlete Martin Fourcade leave PyeongChang with 3 gold medals, the physics of avalanches, and how bubbles freeze. 

    If you missed any of our previous Olympic coverage, you can find our previous entries on the themed series page, and for more great interviews with fluids researchers, check out our previous collab video. (Video credit: T. Crawford and N. Sharp; image credits: GettyImages, T. Crawford and N. Sharp)

  • An Armored Bed

    An Armored Bed

    A river’s flow constantly changes its underlying bed. The rocks and particulates beneath a flowing river can typically be divided into two zones: an upper layer called the bed-load zone where the flow moves particles with it and a lower layer where particles are mostly trapped but may creep over long periods. In gravelly river-beds this upper bed-load zone tends to accumulate more large particles, a phenomenon known as armoring. Experiments show that, in this region, large particles have a net vertical velocity moving upward, while smaller particles tend to move downward. Exactly why large particles are more prevalent in the bed-load zone in unknown; several theories have been offered. One suggests that the size segregation is similar to the Brazil nut effect and that smaller particles have a tendency to fall into gaps and sink more easily than larger ones. (Image and research credit: B. Ferdowsi et al., source)

  • Featured Video Play Icon

    Fluids Round-Up

    Time for another fluids round-up! Here are some of the best fluids-related links I’ve seen around:

    – Above The Brain Scoop tells us about beetles that spend their whole lives underwater. They carry a little bubble of air with them in order to breathe!

    – Microfluidics are helping reveal how cancer cells metastasize and spread through the bloodstream.

    – It’s official! NASA’s going to build X-planes again.

    – See how snake venom kills by changing the fluid properties of a victim’s blood. (via Gizmodo)

    Metallic foams can stop bullets and radiation, spawning many potential future uses here on Earth or in space.

    Why nature prefers hexagons, especially in honeycomb, bubbles, and foam.

    – Earth has beautiful auroras, but if you could look at Jupiter with x-ray vision, you’d see something even more spectacular – a non-stop aurora that brightens on a regular schedule.

    SciShow asks where the water goes in Minnesota’s Devil’s Kettle Falls. Conservation of mass says it has to go somewhere!

    And, in case you missed it, you can check out the latest FYFD video and learn more about the Brazil Nut effect over at Gizmodo.

    (Video credit: The Brain Scoop)

  • The Brazil Nut Effect

    The Brazil Nut Effect

    The Brazil nut effect is a common name for the phenomenon where large particles tend to rise to the top of a mixture when it’s shaken. It’s also the subject of the latest FYFD video, which you can see above.

    I’ve seen other mentions of the topic previously, but when I started researching the literature, I discovered that the Brazil nut effect was much more complicated than I’d thought! Hopefully, you’ll find the results as interesting as I did. And if you want to dig further, there are links to the papers I used over on YouTube.

    Filming was also interesting this time around. I tried out stop-motion animation for the first time. It takes so much patience! But I think the results are so cute. (Image and video credit: N. Sharp/FYFD)