Near absolute zero, as atoms slow down, some materials become a superfluid, a type of matter with zero viscosity. Superfluids do all kinds of strange things like generate fountains, leak from sealed containers, and form quantized vortices. Theorists also predicted that in a superfluid heat would slosh back and forth like a wave, even without any flow. They call this “second sound” and researchers have now detected it for the first time.
In a typical experiment, we’d use an infrared camera to see how heat moves in a substance, but at the frigid temperatures of superfluids, that’s not possible. Instead, the team developed a method that measured the temperature of their atomic gas using radio frequency. When their lithium-6 fermions were at a higher temperature, they resonated with a higher radio frequency. Using radio frequency to probe the substance, they were able to observe exactly when heat stopped diffusing like in normal matter and switched to the superfluid second sound state. Since superfluids may live at the heart of neutron stars, further experiments will help us understand these exotic forms of matter. (Image credit: J. Olivares/MIT; research credit: Z. Yan et al.; via MIT News and Gizmodo)

Leave a Reply