Tag: cooking

  • The Physics of Al Dente

    The Physics of Al Dente

    It’s a simple weeknight routine: toss a handful of spaghetti noodles in boiling water, wait a few minutes, and enjoy with the sauce of your choice. But there’s a surprising amount of physics in the humble strand of spaghetti, and a new model focuses on the way spaghetti sags and curls as it cooks.

    Spaghetti, like most pastas, is made of semolina flour mixed with water, extruded (in commercially produced spaghetti), and then dried. Once immersed in water, the rod of pasta begins to swell and soften as water works its way slowly inward. At the same time, it will lose some of its starches to the surrounding water. If the water is hot enough, the pasta undergoes an additional process, starch gelatinization, which is responsible for cooked pasta’s characteristic texture. That perfect al dente condition occurs right as the hydration front reaches the pasta’s core.

    As all of this happens, the initially straight spaghetti strand sags, settles, and curls. Researchers found that, even with a relatively simple model that assumes spaghetti doesn’t stick to the pot, they could capture shape change of individual spaghetti strands, suggesting it’s possible to identify perfectly cooked pasta by shape alone. (Image credit: Pixabay; research credit: N. Goldberg and O. O’Reilly; via Ars Technica)

  • Kneading Dough

    Kneading Dough

    Kneading bread dough is something of an art. The process binds flour, water, salt, and yeast into a network that is both elastic and viscous. It also traps pockets of air that will determine the texture of the final loaf. Underknead and the bubbles won’t form; overknead and the result will be a dense loaf that doesn’t rise in the oven.

    Capturing all of that physics in a realistic model is tough, but researchers have done so and validated their digital dough against experiments. The group focused on simulating industrial mixers, which knead dough with a moving, spiral-shaped rod rotating around a stationary vertical one. They found the industrial set-up did not mix as well as kneading by hand, but that could be improved by swapping the stationary rod for a second spiral one. (Image credit: G. Perricone; research credit: L. Abu-Farah et al.; via Physics World; submitted by Kam-Yung Soh)

  • Crepe-Making Physics

    Crepe-Making Physics

    If you buy a crêpe from a vendor, chances are that they’ll use a blade like the one above to spread the batter evenly across an immobile griddle. But for those of us making our own crêpes at home, this method is impractical. (After all, who wants to purchase a special griddle and utensil just for making one meal?) Instead most of us make our crêpes or pancakes in a standard pan and we use gravity to help us spread the batter.

    Now researchers have described this crêpe-making process mathematically and calculated the optimal method for getting a perfect, uniformly-thin crêpe. Their model even accounts for the fact that the viscosity of the batter changes as the crêpe cooks.

    For optimal crêpe-making, add the batter to the center of the pan. Then immediately tilt the pan to one side to spread the batter all the way to the edge. Keeping the pan inclined, rotate once to fill in the full circumference. Then continue the rotation at a slighter incline to fill in any holes until the pan is horizontal and the crêpe is cooked through. This is what’s shown in the lower animation, where the colormap indicates the crêpe thickness and the arrows show the effective direction of gravity. (Image credit: crêpe-making – taleitan, simulated crêpe – E. Boujo and M. Sellier; research credit: E. Boujo and M. Sellier; via APS Physics; submitted by Kam-Yung Soh)

  • Giving Chocolate that Smooth Finish

    Giving Chocolate that Smooth Finish

    Anyone who’s tried to make chocolate confections at home can tell you that achieving that perfect smooth consistency isn’t easy. It was only after Rodolphe Lindt invented the process of conching in 1879 that anyone enjoyed smooth chocolate. Conching is what allows granular solids like sugar, milk and cocoa powders to mix with liquid cocoa butter into a smooth, homogeneous liquid. Although the process has been known for more than a century, it’s only recently that researchers have unraveled the underlying physics that enables it.

    One of the key parameters to conching is the a mixture’s jamming volume fraction; in other words, the point where the fraction of solid particles in the mixture is too high for it to flow freely. In the first stage of conching, the solid particulates and a small amount of liquid are stirred and slowly heated. The mechanical action of stirring breaks up aggregates and raises the jamming volume fraction. By the end of the dry conche, the mixture could flow, in theory, except that it fractures at a lower stress than what’s necessary to flow.

    At this point, chocolatiers add the remainder of the liquid ingredients. That infusion of moisture decreases the friction between solid particles and further raises the jamming volume fraction. With the system now far below that jamming point, the mixture transforms into a freely-flowing, smooth fluid. By understanding the intricacies of the process, scientists hope to reduce the energy necessary in chocolate production and similar industrial processes.  (Image credit: A. Stein; research credit: E. Blanco et al.; via Physics World; submitted by Kam-Yung Soh)

  • Inside Fondue

    Inside Fondue

    Cheese fondue is a complex – and delicious – Swiss delicacy. The perfect fondue requires the right mix of ingredients and preparation to get the rheology – the flow character – just right. Fondue is a colloid, a fluid containing a mixture of suspended insoluble particles.

    The major components, rheologically speaking, are fat globules and casein proteins from the cheese, ethanol from the wine, and some added starch. Left on their own, the fat and casein tend to separate, something that’s sure to ruin the fondue. Adding the right amount of starch prevents that separation and keeps the fondue together. The viscosity of fondue is very important as well. If it’s too runny or too gummy, the mouthfeel will be wrong and it may not stick to the bread when dipped. Adding wine decreases the viscosity.

    All in all, the quality and perception of a good fondue relies heavily on its rheological character. Without the right proportion of ingredients to set the perfect viscous and chemical character, the dish literally comes apart. (Image credit: Pixabay; research credit and submission: P. Bertsch et al.)

  • Featured Video Play Icon

    What Keeps a Foam Intact

    Beer, soda, soap, meringue – foams are everywhere in our lives. But have you ever wondered why some foams disappear so quickly while whipped egg whites stick around? That’s the subject of this Gastrofisica video, which is in Spanish but has English captions.

    Foams form when air gets introduced into a liquid, but for those bubbles to stick around, they need a certain special something. With soapy water, that ingredient is surfactants, molecules with both hydrophobic (water-fearing) and hydrophilic (water-loving) ends, which line up at the interface of the foam and help hold it together. But surfactants are relatively weak, especially compared to to the albumin proteins in an egg white. By whipping egg whites, you’re effectively untangling those proteins, and, like surfactants, they line up at the interface of the foam so that their hydrophobic and hydrophilic parts can hang out in their preferred mediums. With so many similar molecules crowded together, the proteins coagulate, adding extra strength and stiffness to your whipped egg whites. (Video and image credit: Tippe Top Physics; h/t to MinutePhysics)

  • Oil Splatters

    Oil Splatters

    Most cooks have experienced the unpleasantness of getting splattered with hot oil while cooking. Here’s a closer look at what’s actually going on. The pan is covered by a thin layer of hot olive oil. Whenever a water drop gets added – from, say, those freshly washed greens you’re trying to saute – it sinks through the oil due to its greater density. Surrounded by hot oil and/or pan, the water heats up and vaporizes with a sudden expansion. This throws the overlying oil upward, creating long jets of hot oil that break into flying droplets. These are what actually hit you. This is a small-scale demonstration, but it gets at the heart of why you don’t throw water on an oil fire. (Image credit: C. Kalelkar and S. Paul, source)

  • Featured Video Play Icon

    Inside a Blender

    The fluid dynamics of a commercial-quality blender amount to a lot more than just stirring. Here high-speed video shows how the blender’s moving blades create a suction effect that pulls contents down through the middle of the blender, then flings them outward. This motion creates large shear stresses, which help break up the food, as well as turbulence that can mix it. But if you watch carefully, you’ll also see tiny bubbles spinning off the blades. These bubbles, formed by the pressure drop of fluid accelerated over the arms of the blades, are cavitation bubbles. When they collapse, or implode, they create localized shock waves that further break up the blender’s contents. This same effect is responsible for damage to boat propellers and lets you destroy glass bottles. (Video credit: ChefSteps; via Wired; submitted by jshoer)