Tag: bird flight

  • Featured Video Play Icon

    Hummingbirds Singing with their Tail Feathers

    Aeroelastic flutter occurs when fluid mechanical forces and structural forces get coupled together, one feeding the other. Usually, we think of it as a destructive mechanism, but, for hummingbirds, it’s part of courtship. When a male hummingbird looks to attract a mate, he’ll climb and dive, flaring his tail feathers one or more times. As he does so, air flow over the feathers causes them to vibrate and produce noise. Researchers studied such tail feathers in a wind tunnel, finding a variety of vibrational behaviors, including a tendency for constructive interference–in other words two feathers vibrating in proximity is much louder than either individually. For more, check out the original Science article or the write-up at phys.org. (Video credit: C. Clark et al.)

  • Featured Video Play Icon

    Dove in Flight

    This spectacular high-speed video shows a dove in flight. Note how its wings flex through its stroke and the way the wings rotate over the course of the downstroke and reversal. There is incredible beauty and complexity in this motion.  The change in wing shape and angle of attack is what allows the bird to maximize the lift it generates. Note also how the outer feathers flare during the downstroke. This promotes turbulence in the air moving near the wing, which prevents separated flow that would cause the dove to stall. (See also: how owls stay silent. Video credit: W. Hoebink and X. van der Sar, Vliegkunstenaars project)

  • Evolving Flight

    Evolving Flight

    Flapping wings while running may have helped the evolutionary ancestors of birds develop flight. Experiments with modern birds show that flapping wings while running helps even flight-capable birds ascend slopes and uses only 10% as much power as actual flight along a 65-degree incline. #

  • Featured Video Play Icon

    Human-Powered Ornithopter

    A team at the University of Toronto has flown the world’s first human-powered ornithopter, an aircraft that flies by flapping its wings like a bird. The concept dates back all the way to Da Vinci in the 15th century. Part of why it’s taken centuries to realize the dream is that bird flight is much more complicated than simply flapping up and down. Flapping a wing up and down will produce lift equally upward and downward. In order to create usable lift and thrust, it’s necessary to change the angle of attack during each stroke by twisting the wing while flapping. Watch the U of T craft carefully, and you can see this happening. #