Tag: ultrasonic levitation

  • Featured Video Play Icon

    Sonic Tractor Beam

    Acoustic levitation uses the radiation forces generated by sound waves to trap small, lightweight particles at the nodes of standing waves. We’ve seen this a number of times previously, both with solid objects and liquid droplets. What makes this example particularly impressive, though, is that these researchers use an array of speakers to manipulate multiple objects at once. Check out the video above for a whole series of clips from the research. (Video credit: Science; research credit: A. Marzo and B. Drinkwater)

  • Visualizing Acoustic Levitation

    Visualizing Acoustic Levitation

    The schlieren photographic technique is often used to visualize shock waves and other strong but invisible flows. But a sensitive set-up can show much weaker changes in density and pressure. Here, schlieren is used to show the standing sound wave used in ultrasonic levitation. By placing the glass plate at precisely the right distance relative to a speaker, you can reflect the sound wave back on itself in a standing wave, seen here as light and dark bands. The light bands mark the high-pressure nodes, where the pressure generated by the sound waves is large enough to counteract the force of gravity on small styrofoam balls. This allows them to levitate but only in the thin bands seen in the schlieren. Move the plate and the standing wave will be disrupted, causing the bands to fade out and the balls to fall. (Video and image credit: Harvard Natural Sciences Lecture Demonstrations)

  • Featured Video Play Icon

    Ultrasonic Levitation of Drops

    This video shows an ultrasonically levitated 3 mm drop of propylene glycol changing shape. A couple of things are happening here. Firstly, the drop is suspended due to the acoustic radiation pressure from intense ultrasonic sound waves being produced by a transducer vibrating at 30kHz. Then the power input to the ultrasonic transducer is increased, which strengthens the acoustic field, and this is what causes the drop to flatten. Currently, acoustic levitation is used for containerless processing of very pure materials or chemicals. As with many methods for levitation, it is currently restricted to objects of relatively light weight. (Video credit: J. R. Saylor et al, Clemson University)