Tag: tidal bore

  • Fish-Scale Tides

    Fish-Scale Tides

    On 31 July 2022, an unusual tidal phenomenon, a fish-scale tide, took place on the Qiantang River’s estuary in Zhejiang Province, China. Here are a couple videos. I’ve not found any explanations for it thus far, so I’m assembling my own. The Qiantang River and its estuary, Hangzhou Bay, are home to the world’s largest tidal bores, reaching 9 meters in places. That means the area regularly sees trains of large waves moving upstream against the normal current.

    The area is also known to have rotating currents, meaning that the tide does not simply move inland and then smoothly reverse direction. Instead, a rotating current can change its direction of flow over the course of a tidal cycle without changing its speed. Taken together, this makes the Qiantang River region perfect for winding up with groups of waves colliding at oblique angles, similar to a cross sea. I believe that’s what’s going on here with the fish-scale tide. Two sets of tidal-bore-induced waves are colliding at an angle, creating some gnarly conditions and a very cool pattern. (Image credit: VCG; submitted by Antony B.)

  • Featured Video Play Icon

    Tides

    Most of us think we understand why Earth’s oceans have tides, but it turns out that there are some misconceptions in the common explanation. Yes, it’s true that the moon’s gravity pulls on water in the ocean, but it equally pulls on everything else, too, and we don’t levitate at high tide! In reality, it’s the distribution of tidal forces across the enormity of the ocean that causes the ocean to bulge along the Earth-moon line and create high and low tides. Lakes, puddles, and humans experience tides, too, but we’re so small that the tidal forces we experience are too tiny to be noticeable. For the full explanation, I encourage you to watch PBS Space Time’s video. Don’t let the 15 minute run-time deter you; the tidal explanation is contained within the first 9 minutes. (Video credit: PBS Space Time; via It’s Okay To Be Smart)

  • Tidal Bore

    Tidal Bore

    The daily ebb and flood of the tides results from the competing forces of the Earth’s rotation and the sun and moon’s gravitational pull on the oceans. In a few areas, the local topography funnels the incoming water into a tidal bore with a distinctive leading edge. The photo above comes from the Turnagain Arm of the Cook Inlet in Alaska, where bore tides can reach a height of 7 ft and move as quickly as 15 mph. For surfers, the bore can provide a long ride–40 minutes in this case–but they can be extremely dangerous as well. Bore tides are associated with intense turbulence capable of ripping out moorings and structures; the waves are often accompanied by a roar caused by air entrainment, impact on obstacles, and the erosion of underlying sediment.  (Photo credit: S. Dickerson/Red Bull Illume; via Jennifer Ouellette)