Tag: speedskating

  • PyeongChang 2018: Speedskating

    PyeongChang 2018: Speedskating

    Four years ago in Sochi, Under Armour’s suits for the U.S. speedskating team took a lot of flak after the team failed to medal. The company defended the physics and engineering of their suits, and an internal audit of the speedskating program ultimately placed blame on flaws in their training regimen, unfamiliarity with the new suits, and overconfidence.

    This time around Under Armour has taken a more hands-on approach with the team, helping with training regimens in addition to providing suits. Under Armour spent hundreds of hours testing the suits in Specialized’s wind tunnel, including testing many fabrics before settling on the slightly rough H1 fabric used in patches on the skater’s arms and legs. Like the previous suit’s dimpled design, the roughness of the fabric promotes turbulent flow near it. Because turbulent flow follows curved contours better than laminar flow does, air stays attached to the athlete for longer, thereby reducing their drag. The suit is also designed with asymmetric seams that help the athlete stay low and comfortable in the sport’s frequent left turns.

    U.S. speedskaters have been competing in a version of the suits since last winter, ensuring that athletes are familiar with the equipment this time around. Whether the new suits and training program will pay off remains to be seen. After their disastrous experience in Sochi, both the team and the company are shy about setting expectations. (Image credits: D. Maloney/Wired; US Speedskating)

  • Sochi 2014: Speedskating Redux

    Sochi 2014: Speedskating Redux

    Since we wrote about the US team’s speedskating suits last week, they have become the subject of major controversy. After six events, the US team had not placed higher than seventh despite strong World Cup results during the autumn. The Wall Street Journal reported that three people familiar with the team suggested a design flaw:

    Vents on back of the suit, designed to allow heat to escape, are also allowing air to enter and create drag that keeps skaters from staying in the low position they need to achieve maximum speed, these people said. One skater said team members felt they were fighting the suit to maintain correct form. #

    To address this, some members had seamstresses sew fabric over the vent. The upper left image shows the original suit and the one on the right shows a team member in a modified suit. The change made no apparent impact on the skaters’ finish. The US team has no gone so far as to get a special dispensation to switch back to their older suits but still the podium eluded skaters in Saturday’s events. 

    Now, to be clear, I have not seen any data on the development of Under Armour’s suits beyond the public coverage, and I have no connections to any of the parties involved. However, given the extensive nature of the wind tunnel development that went into these suits, I would be exceptionally surprised if there was a design flaw capable of slowing skaters down by nearly 1 second over 1000 meters. It would require a major flaw in the testing design and methodology to overlook such a substantial drag effect.

    At the same time, there are other factors that may be affecting the US team adversely. Sochi’s races are taking place at low altitudes, where the air is denser and drag is greater. This does affect all competitors, but it is worth noting that many of the US speedskaters train at altitude in Salt Lake City and that the entire team had their training camp at high altitude in Italy prior to Sochi.  Another factor is the ice conditions. Salt Lake has what is considered fast ice that permits longer glides between each step, whereas Sochi has soft ice, which requires a faster tempo and does not glide as easily. (Image credits: Under Armour, Getty Images, P. Semansky/AP)

  • Sochi 2014: Speedskating Suits

    Sochi 2014: Speedskating Suits

    Long track speed skating is a race against the clock. Skaters reach speeds of roughly 50 kph, so drag has a significant impact. This is why skaters stay bent and spend straightaways–their fastest segments on the ice–with their arms pulled behind them. It’s also why their speedsuits have hoods to cover their hair. This year the U.S. speed skaters are wearing special suits designed by Under Armour and Lockheed Martin especially for their aerodynamics. The suits feature a mixture of fabrics including raised surface features on the hood and forearms. These bumps are designed to trip turbulent flow in these regions. It seems counterintuitive, but drag is actually lower for a turbulent boundary layer than a laminar one at the right Reynolds number range. This is because turbulent boundary layers are better at staying attached to non-streamlined bodies. The longer flow stays attached to the skater, the smaller the pressure difference between the air in front of the skater and the air in his wake. The suit’s seams and even its hot-rod-like flames were placed with this effect in mind. Only time will tell whether the suits really give skaters a competitive edge, but since Sochi’s low-altitude increases drag on skaters, they will appreciate some extra speed. For more, NSF has an inside look at the suit’s development. (Photo credits: Under Armour)

    FYFD is exploring the fluid dynamics of the Winter Olympics. Check out previous posts on how lugers slide fast and why ice is slippery, and be sure to stay tuned for more!