Tag: skipping stones

  • Skipping Stone Physics

    Skipping Stone Physics

    Skipping stones across water has fascinated humans for millennia, but incredibly, we’re still uncovering the physics of this game today. A recent paper built and experimentally validated a mathematical model of a spinning, skipping disk. The authors found that, in order to skip, a stone needs to generate upward acceleration greater than 3.8 times gravity.

    To get that lift, the stone needs both the Magnus effect and the gyro effect. The Magnus effect is an aerodynamic force generated by an object spinning in a fluid that curves it away from its direction of travel — it’s what curves a corner kick into the goal in a soccer match. The gyro — or gyroscopic — effect also has to do with spinning, but it’s a result of conservation of angular momentum. Essentially, when you try to shift the axis that a rotating object spins around, there’s a force that resists that change. (The classic demo for this uses a spinning bicycle wheel.)

    In stone skipping, the gyro effect helps stabilize the stone’s bounce and, if it’s spinning fast enough, keeps its direction of travel straight. Once the stone’s spinning slows, the Magnus effect can start to curve its trajectory. (Image credit: B. Davies; research credit: J. Tang et al.; via Physics World; submitted by Kam-Yung Soh)

  • Stone Skipping Physics

    Stone Skipping Physics

    The current record for stone-skipping is about 88 skips. For most of us, that’s an unimaginably high number, but according to physicists, human throwers may top out around 300 or 350 skips. In the video above and the accompanying article, Wired reporter Robbie Gonzalez explores both the technique of a world-record-holding skip and the physics that enable it.

    The perfect skip requires many ingredients: a large, flat rock with good edges; a strong throw to spin the rock and hold it steady at the right angle of attack; and a good first contact with the right entry angle and force to set up the skips’ trajectory. The video is long, but it’s well worth a full watch. It gives you an inside look both at a master skipper and at the experts of skipping science. (Video and image credit: Wired; see also: Splash Lab, C. Clanet et al.; submitted by Kam-Yung Soh)

    ETA: Wired’s embed code is acting up, so if you can’t see the stone skipping video here, just go to the article directly.

    Heads up for those going to the APS DFD meeting! You can catch my talk Monday, Nov. 19th at 5:10PM in Room B206. I’ll be talking about how to use narrative devices to tell scientific stories. I’ll be around for the whole meeting, so feel free to come say hi!

  • Featured Video Play Icon

    Fluids Round-Up

    Time for another fluids round-up! Here’s some of the best fluid dynamics from around the web:

    – Band Ok Go filmed their latest music video in microgravity, complete with floating, splattering fluids. Here they describe how they did it. Rhett Allain also provides a write-up on the physics.

    – Scientists are trying to measure the impact of airliners’ contrails on climate change. (pdf; via @KyungMSong)

    – Researchers observing the strange moving hills on Pluto suspect they may, in fact, be icebergs.

    – The best angle for skipping a rock is 20-degrees. Related: elastic spheres skip well even at higher angles. (via @JenLucPiquant)

    – Fluid dynamics and acoustics have some fascinating overlaps. Be sure to check out “The World Through Sound” series at Acoustics Today, written by Andrew “Pi” Pyzdek, who also writes one of my favorite science blogs.

    – Over at the Toast, Mallory Ortberg explores the poetry of the Beaufort wind scale.

    Could dark matter be a superfluid? (via @JenLucPiquant)

    – Understanding the physics of the perfect pancake is helping doctors treat glaucoma. (submitted by Maria-Isabel)

    – Van Gogh’s “Starry Night” shows swirling skies, but just how turbulent are they? (submitted by @NathanMechEng)

    – The physics (and fluid dynamics!) of throwing a football – what’s the best angle for a maximum distance throw? (submitted by @rjallain)

    (Video credit: Ok Go)

    Thanks to our Patreon patrons who help support FYFD!

  • Skipping Squishy Spheres

    Skipping Squishy Spheres

    Skipping a stone on water requires a flat, disk-like stone thrown at a shallow angle, but elastic spheres are remarkable skippers, too, even at higher impact angles. Researchers at the Splash Lab have just published their work on why these balls skip so well. As seen in the top animation, the elastic spheres deform on impact, flattening to a more disk-like shape that rides at an angle of attack relative to the air-water interface. Both features are important to the spheres’ enhanced skipping. By flattening, the sphere comes into greater contact with the water and by orienting at a larger angle of attack, the sphere increases the vertical component of force the water generates on the sphere. It’s this vertical force that lifts the sphere up and lets it keep bouncing.

    Because the ball is soft, it keeps deforming after its impact and bounce (see top animation). For some skips, the timescale of the sphere’s elastic waves is smaller than the length of time the sphere is in contact with the water. When this is the case, the sphere’s elastic waves will affect the impact cavity in the water, forming what the researchers call a

    matryoshka cavity, after the Russian nesting dolls. An example is shown in the second animation. For more, check out the USU press releasethe original paper, or the award-winning video they made a few years ago.  (Image credits: J. Belden et al./The Splash Lab)

    If you enjoy FYFD and want to help support it, please consider becoming a patron!

  • Featured Video Play Icon

    Stone-Skipping Physics

    Many people have learned to throw skipping stones across a pond or lake, but how many have considered the physics of how it happens? In this video, researchers use high-speed video to explore the skipping of various balls across water. The deformation of the ball as well as the shape of the cavity its impact creates determines whether it rebounds off the water’s surface.