Tag: ouzo

  • Featured Video Play Icon

    The Birth of a Liquor

    A water droplet immersed in a mixture of anise oil and ethanol displays some pretty complicated dynamics. Its behavior is driven, in part, by the variable miscibility of the three liquids. Water and ethanol are fully miscible, anise oil and ethanol are only partially miscible, and anise oil and water are completely immiscible. These varying levels of miscibility set up a lot of variations in surface tension along and around the droplet, which drives its stretching and eventual jump.

    Once detached, the droplet takes on a flattened, lens-like shape that continues to spread. That spreading is driven by the mixing of ethanol and water, which generates heat and, thus, convection around the drop. This not only spreads the droplet, it causes turbulent behavior along the drop’s interface. (Image and video credit: S. Yamanidouzisorkhabi et al.)

  • Featured Video Play Icon

    The Shaky Life of a Droplet

    An evaporating drop of ouzo goes through several stages due to the interactions of oil, alcohol and water. If you turn the situation around by placing a drop of (blue-dyed) water in a mixture of alcohol and anise oil (top image), you get some similarly odd behavior. The drop of water shimmies and grows as alcohol dissolves into it, carrying the occasional oil droplet with it. Eventually, the droplet grows large enough and buoyant enough that part of it detaches and floats to the surface (middle image). If you increase the alcohol ratio in the surrounding fluid, you speed up this process, causing droplets to stream up to the surface (bottom image). (Image and video credit: O. Enriquez et al., source)

  • The Evaporation of Ouzo

    The Evaporation of Ouzo

    Ouzo is an aperitif made up of ethanol (alcohol), water, and anise oil. This three-part, or ternary, mixture undergoes an intriguing evaporation process thanks to the characteristics of its components. An ouzo drop’s evaporation can be divided into four phases, each shown above. Initially, the drop is well-mixed and transparent (upper left). 

    Since ethanol is the most volatile of ouzo’s components, it evaporates the most quickly. As the ethanol evaporates, the drop becomes oversaturated with oil (upper right). Oil droplets form, giving the ouzo a milky appearance. At the same time, the ethanol evaporating causes gradients in surface tension, which drive a vigorous Marangoni flow inside the drop. 

    Eventually, the ethanol finishes evaporating and the oil drops collect in a ring around the outside of the drop (lower left). Slowly, the water inside the drop evaporates. Eventually, a tiny microdroplet of water is left to dissolve in the anise oil (lower right). (Image and research credit: H. Tan et al., source; via Inkfish)