Tag: avalanche

  • Featured Video Play Icon

    Singing Sand Dunes

    Reports of singing sand dunes date at least as far back as 800 C.E. Strange as it sounds, about forty sites around the world have been associated with this phenomenon, in which avalanches of sand grains on the outer surface of the dune cause a deep, booming hum for up to several minutes. As you can hear in the video above, the sound of the dune is somewhat like a propeller-driven airplane. A leading explanation for this behavior is that it results not from the size or shape of the sand grains but from the structure of the underlying dune.

    Measurements show that the booming sand dunes contain a hard packed layer of sand 1-2 meters below the surface. When sand at the surface is disturbed by the wind or sliding researchers, it creates vibrations. Those disturbances have trouble crossing into the air or into the harder layers below. Instead they resonate in the upper surface of the sand, which acts as a waveguide, reflecting and enhancing the sound, just as the body of a violin resonates to enhance the vibration of its strings. For more, check out this video from Caltech or the research paper linked below. (Video credit: N. Vriend; research credit: M. Hunt and N. Vriend, pdf)

  • The Angle of Repose

    [original media no longer available]

    Granular materials like sand tend to form heaps when poured. The steepness of the heap at rest is described by the angle of repose, which is determined by a balance between gravity, normal force, and friction on the grains. When a heap of grains is disturbed, it can trigger an avalanche. As can be seen in the video above, avalanches are a surface phenomenon, only moving the top few layers of grain while most of the heap remains stationary.  (Video credit: Peddie School Physics)

  • Featured Video Play Icon

    Triggering Avalanches

    Humans often trigger avalanches purposefully before natural ones can occur. Either way, avalanches begin when external stresses on the snow pack exceed the strength within the snow pack or at the contact between the snow and the ground. Acceleration of the snow is gravity-driven. If the snow mixes with air, powder clouds can form that carry snow even further than the main slab. Although the snow itself is not a fluid, once an avalanche gets moving, its behavior can be better modeled as a fluid than as a solid.

  • Singing Dunes

    Singing Dunes

    Some sand dunes can “sing”, but not because of the wind! When loose sand slides down over harder, packed sand, a standing wave is formed, causing the entire surface of the dune to vibrate on a single frequency. We hear this as a musical note – typically an E, F, or G. (via io9)

    (Image credit: C. Larson)
  • Featured Video Play Icon

    Avalanche Disk

    In the Science Storms section of the Chicago Museum of Science and Industry, you’ll find the mesmerizing sight of an avalanche disk. This 20ft disk spins at a variable rate and angle, and, from the video, you can see that the glass beads simulating an avalanche on the disk move very much like a fluid even though they are not. This is what’s called a granular flow and it’s driven by gravity and friction between particles.