Tag: teapot effect

  • Solving the Teapot Effect

    Solving the Teapot Effect

    The teapot effect — that tendency for liquid to dribble down the outside of the spout when pouring — is a frustration to many tea drinkers. Unraveling the fluid dynamics of this phenomenon has taken various researchers decades, but a team now believe they’ve captured the problem fully. Their full mathematical description is quite dense, but it boils down to a subtle interplay of capillary, viscous, and inertial forces.

    Essentially, they found that droplets will always form just under the lip of the spout, thereby keeping that area wetted. The flow rate of the pour (along with the geometry and surface characteristics of the spout) determines how large those droplets can grow. At low flow rates, the droplets can grow large enough to redirect the entire stream around the spout’s edge, creating a hugely frustrating mess. You can see this flow rate effect in the high-speed video below. (Image credit: S. Ferrari; video and research credit: B. Scheichl et al.; via Ars Technica; submitted by Kam-Yung Soh)

  • Wrapping Rivulets

    Wrapping Rivulets

    Tea lovers have long been frustrated by the tendency of liquid jets to adhere to solid surfaces – the so-called teapot effect that makes the last vestiges of every pour drip down the spout. By investigating the effect with vertical rods, researchers found that, at low enough flow rates, a liquid jet is able to adhere completely, forming a liquid helix that coils around the rod. The authors were also able to construct a mathematical model to capture the behavior. They concluded that both the wettability of a surface and the curvature of the solid are critical to determining whether or not a liquid jet will stick. (Image and research credit: E. Jambon-Puillet et al.; via APS Physics; submitted by Kam-Yung Soh)