Tag: pigeons

  • Morphing Wings Using Real Feathers

    Morphing Wings Using Real Feathers

    Although humanity has long been inspired by bird flight, most of our flying machines are nothing like birds. Engineers have struggled to recreate the ease with which birds are able to morph their wings’ characteristics as they change from one shape to another. Now researchers have built a biohybrid robot, PigeonBot, that uses actual pigeon feathers as part of its morphing design.

    Many species of birds, including pigeons, have Velcro-like hooks in the microstructure of their feathers. These hooks help the flight feathers stick to one another and create a continuous wing surface that air cannot easily slip through, even as the wing drastically changes shape. By using actual feathers, PigeonBot shares this advantage.

    PigeonBot also has a somewhat minimalist design in its articulation, using only a wrist and finger joint in each wing to control shape. The feathers are connected through an elastic ligament, which — along with their microstructure — allows them to smoothly change shape under aerodynamic loads. The end result is a remarkably capable and agile biorobot researchers can use to better understand how birds control their flight. (Image and research credit: L. Matloff et al. and E. Chang et al.; via NPR and Gizmodo)

  • The Impressive Take-Off of Pigeons

    The Impressive Take-Off of Pigeons

    One reason that peregrine falcons are such amazing fliers is that their prey, pigeons, are no slouches in flight, either. Able to take off vertically and accelerate to 100 kph in two seconds, pigeons are pint-sized powerhouses. With this high-speed video, BBC Earth highlights the mechanics of this vertical take-off. Pigeons begin by bending their legs and jumping high enough that their first downstroke can extend fully and still clear the ground. That gives them a headstart on generating the force they need to propel themselves upward. 

    Note the way the pigeon’s wings move, sweeping from directly behind the bird’s back to a full extension in front of it. With the bird moving vertically, this motion tells us that it’s thrust – not aerodynamic lift – from the wingstroke that’s powering this take-off. In that sense, the pigeon is something like a Harrier jet, using the thrust of air downward to take off vertically. (Image and video credit: BBC Earth)